

NTS Educators SSE (Science) Jobs Test

Sr	Questions	Answers Choice
1	The fundamental unit which has same power in the dimensional formula of surface tension and viscosity is:	A. Mass B. Length C. Time D. None
2	Planck's constant has the dimensions of:	A. Energy B. Momentum C. Frequency D. Angular momentum
3	The dimensional formula of toque is:	A. [ML ² T ²] B. <span style="font-size:
14.4444465637207px;">[ML <span style="font-size:
14.4444465637207px;">T ² <span style="font-size:
14.4444465637207px;">[ML < C. <span style="font-size:
14.4444465637207px;">[ML ⁻¹ <span style="font-size:
14.4444465637207px;">[ML ⁻¹ <span style="font-size:
14.4444465637207px;">[ML ⁻² <span style="font-size:
14.4444465637207px;">[ML ⁻² <span style="font-size:
14.4444465637207px;">[ML ⁻² <span style="font-size:
14.4444465637207px;">[ML ⁻² <span style="font-size:
14.4444465637207px;">[ML ⁻² <span style="font-size:
14.4444465637207px;">[ML ⁻² <span style="font-size:
14.4444465637207px;">] ⁻² <span style="font-size:
14.4444465637207px;">]
4	The percentage errors in the measurements of mass and speed are 2% and 3% respectively. How much estimate of the kinetic energy obtained by measuring mass and speed	A. 11% B. 8% C. 5% D. 1%
5	The unit of inductance is equivalent to	A. V x s/A B. V x A/s C. A x s/v D. V/A x s
6	The motion without consideration of its cause is studied in:	A. Kinematics B. Mechanics C. Statics D. Modern Physics
7	The sieman is the SI unit of	A. Resistance B. Specific Resistance C. Conductance D. Inductance
8	The volt/metre is the unit of:	A. Potential B. Work C. Force D. Electric field intensity
9	The velocity v of a particle at time t is given by: $v = at + b / t + c$ The dimensional formula of a,b and c care respectively:	A. L ² ; T and LT ² B. LT ² B. LT ² ; LT and L C. <span style="font-size:
14.4444465637207px;">LT ⁻² <span style="font-size:
14.4444465637207px;">; L and T D. L;LT and <span style="font-
size:
14.4444465637207px;">T ⁻²
10	Which of the following is equal to: joule x ohm / volt x second ?	A. Ampere B. Volt C. Watt D. Tesla
11	Which of the following is a scalar quantity	A. Density B. Displacement

		C. Forque D. Weight
12	Which of the following is the only vector quantity	A. Temperature B. Energy C. Power D. Momentum
13	Which of the following lists of physical quantities consists only of vectors:	A. Time,temperature,velocity B. Force,volume,momentum C. Velocity,acceleration,mass D. Force,acceleration,velocity
14	The angle between rectangular components of a vector is	A. 0° B. 60° C. 90° D. 120°
15	A force of 10N is acting along y-axis its component along x-axis is	A. 10N B. 20N C. 100N D. Zero N
16	Two forces are acting together on an object. The magnitude of their resultant is minimum when the angle between the force is.	A. 0° B. 60° C. 120° D. 180°
17	Two forces of 10N and 15N are acting simultaneously on an object in the same direction. Their resultant is	A. Zero B. 5N C. 25N D. 150N
18	If the dot product of two non-zero vectors vanishes the vectors will be	A. In the same directionB. Opposite to each otherC. Perpendicular to each otherD. Zero
19	If two non-zero vector \overline{A} and \overline{B} are parallel to each other, then \overline{A} , \overline{B} is equal to	A. Zero B. AB C. A + B D. A - B
20	The dot product of two vectors is negative when	A. They are parallel vectors B. They are anti-parallel vectors C. They are perpendicular vectors D. None of the above is correct
21	To get a resultant displacement of 10 m, two displacement vectors of magnitude 6 m and 8 m should be combined	A. Parallel B. Antiparallel C. At angle 60° D. Perpendicular to each other
22	The velocity of a particle at an instant is 10 m/s and after 5 s the velocity of the particle is 20 m/s. The velocity 3s before in m/s is:	A. 8 B. 4 C. 6 D. 7
23	A motorist travels A to B at a speed at 40 km/h and returns at speed of 60 km/h. His average speed will be:	A. 40 km/h B. 48 km/h C. 50 km/h D. 60 km/h
24	The sum of the magnitude of two forces acting at a point is 18 and the magnitude of their resultant is 12. If the resultant is at 90° with the force of the smaller magnitude then their magnitude are:	A. 3, 15 B. 4, 14 C. 5, 13 D. 6, 12
25	A train of 150 m length is going towards north direction at a speed of 10 ms ⁻¹ A parrot flies at a speed of 5 ms ⁻¹ towards south direction parallel to the railway track,The time taken by the parrot to cross the train is equal to	A. 12 s B. 8 s C. 15 s D. 10 s
26	What will be the ratio of the distance moved by a freely falling body from rest in 4^{th} and 5^{th} seconds of journey?	A. 4 : 5 B. 7 : 9 C. 16 : 25 D. 1 : 1
27	A body is dropped from a tower with zero velocity reaches ground in 4s. The height of the tower is about	A. 80 m B. 20 m C. 160 m D. 40 m
28	The acceleration 'a' in m/s ² of a particle is given by $a = 3 t^2 + 2 t + 2$, where 't' is the time if the particle starts out with a velocity $v = 2$ m/s at $t = 0$, then the velocity at the end of 2 second is	A. 12 m/s B. 24 m/s C. 18 m/s D. 36 m/s
	The initial velocity of a body moving along a straight line in 7 m/s. It has a uniform	A. 25 m P. 25 m

29	acceleration of 4 m/s ² . The distance covered by the body in the 5th second of its motion is	в. ээ ш С. 50 m D. 85 m	
30	Which of the following four statements is false?	 A. A body can have zero velocity and still be accelerated B. A body can have a constant velocity and still have a varying speed C. A body can have a constant speed and still have a varying velocity D. The direction of the velocity of a acceleration is constant 	
31	Two masses of 1 g and 4 g are moving with equal kinetic energies The ratio of the magnitudes of their linear moments is:	A. 4 : 1 B. √2 : 1 C. 1 : 2 D. 1 : 16	
32	A body moves a distance of 10 m along a straight line under the action of a force of 5 Newtons, if the work done is 25 joules the angle which the force takes with the direction of motion of the body is:	A. 0° B. 30° C. 60° D. 90°	
33	A body of mass 2 kg is thrown up vertically with K.E of 490 joules If the acceleration due to gravity is 9.8 m/s ² the height at which the K.E of the body becomes half its original value is give by:	A. 50 m B. 12.5 m C. 25 m D. 10 m	
34	Two bodies of masses m_1 and m_2 have equal momentum their kinetic energies E_1 and E_2 are in the ratio	A. \m ₁ : \m ₂ B. <span style="font-size:
14.4444465637207px;">m ₁ : m ₂ C. <span style="font-size:
14.4444465637207px;">m ₂ Sub>2 : m ₂: m ₂: m ₁ D. <span style="font-size:
14.4444465637207px;">m ₁ _{2 : m ₂ <span style="font-size:
14.4444465637207px;">m ₂ <span style="font-size:
14.4444465637207px;">m ₂ <span style="font-size:
14.4444465637207px;">m ₂ <span style="font-size:
14.4444465637207px;">m <span style="font-size:
14.4444465637207px;">m <span style="font-size:
14.4444465637207px;">m <span style="font-size:
14.4444465637207px;">m <span style="font-size:
14.4444465637207px;">m <span style="font-size:
14.4444465637207px;">m <span style="font-size:
14.4444465637207px;">m <span style="font-size:
14.4444465637207px;">m <span style="font-size:
14.4444465637207px;">mmmmmmmmmmmmmmM_A and M_B are moving with equal kinetic energy.Their linear moments are numerically in a ratio $\mid P_A \mid : P_B$ will be:</span }</span </span </span </span 	A. <span style="font-size:
14.4444465637207px;">M _B : M _A B. <span style="font-size:
14.4444465637207px;">M _A: M _A: M _B C. M _A </span _A M _A M _A^{2Sub>A^{2_AM _AM _AM _AM _AM _AM _AM _AM _AM _AM _AM _AM _AM</span _AM</span _AM</span _AM</span _AM</span _AM</span _A}}M</span _AMM_{Astyle="font-size: 14.444465637207px;">M<s< td=""></s<>}}
36	How much water a pump of 2kW can raise in one minute to a height of 10 m. take g = 10 m/s ² ?	A. 1000 liters B. 1200 liters C. 100 liters D. 2000 liters	
37	A bullet is short from a rifle. As a result the rifle recoils, The kinetic energy of rifle as compared to that of bullet is	A. Less B. Greater C. Equal D. Cannot be concluded	
38	A man pushes a wall but fails to displace it. He does:	A. Negative work B. Maximum positive work C. Positive work but not maximum D. No work	

39	A particle moves along a circular path under the action of a force. The work done by the force is	A. <span style="font-size:
14.4444465637207px;">Zero B. <span style="font-size:
14.4444465637207px;">Positive and non-zero C. <span style="font-size:
14.4444465637207px;">Negative and non zero D. <span style="font-size:
14.4444465637207px;">None of above
40	A 2 kg body and a 3 kg body have equal momentum if the kinetic energy of 3 kg body is 10 j, the KE of 2 kg body will be	A. 6.66 j B. 15 j C. 22.5 j D. 45 j
41	A body moving in circular motion with constant speed has	A. Constant velocity B. Constant acceleration C. Constant kinetic energy D. Constant displacement
42	Angular momentum is	A. Vector (axial) B. Vector (polar) C. Scalar D. None of these
43	What remains constant in the field of central force?	A. Potential energy B. Kinetic energy C. Angular momentum D. Linear momentum
44	What remains constant when the earth revolves around the sun?	A. Angular momentum B. Linear momentum C. Angular kinetic energy D. Linear kinetic energy
45	If the earth were to rotate faster than its present speed the weight of an object will	 A. Increase at the equator but remain unchanged at the poles B. Decrease at the equator but remain unchanged at the poles C. Remain unchanged at the decrease but decrease at the poles D. Remain unchanged at the equator but increase at the poles
46	Center of mass is a point	 A. Which is geometric center of a body B. From which distance of particles are same C. Where the whole mass of the body is supposed to be centered D. Which is the origin of reference frame
47	A couple produces	A. Purely linear motionB. Purely rotational motionC. Linear and rotational motionD. No motion
48	In which case application of angular velocity is useful?	A. When a body is rotatingB. When velocity of body is in a straight lineC. When velocity is in a straight lineD. None of these
49	What will be the duration of the day and night (in hour) if the diameter of the earth is suddenly reduced to half its original value the mass remaining constant?	A. 12 B. 6 C. 3 D. 2
50	A person standing on a rotating platform has his hands lowered He suddenly outstretches his arms. The angular momentum	A. Becomes zero B. Increases C. Decreases D. Remains the same
51	The velocity of falling raindrops attains limited value because of	A. Up thrust of air B. Vlscous force exerted by air C. Surface tension effect D. Air currents atmosphere
52	The terminal velocity of a small size spherical body of radius R moving in a fluid varies as	A. R B. R ² C. 1/R D. (1/R) ²
53	Bernoulli's equation is based upon law of conservation	A. Mass B. Momentum C. Energy

		D. None of these
54	Surface tension of water is due to	 A. Inter molecular attraction B. Intermolecular spaces C. Inter molecular repulsion D. None of above
55	A person standing near the track of a fast moving train has tendency to fall towards it because of	A. Vibration due to motion of train B. Gravitation force of attraction between person and trains C. The high speed of train D. Some other effect
56	Ball pen function on the principle of	A. Viscosity B. Boyle's law C. Gravitational force D. Surface tension
57	With the increase of temperature viscosity	A. Increase B. Decrease C. Remains same D. Doubles
58	According to Stoke's law drag force depends on	A. Initial velocityB. Final velocityC. Terminal velocityD. Instantaneous velocity
59	The smooth or steady stream-line flow is know as	A. Laminar flow B. Turbulent flow C. Both a and b D. None of the above
60	Blood has a density	A. Equal to water B. Greater then water C. Lesser then water D. None of these
61	Which one of the following is a simple harmonic motion?	 A. Wave moving through a string fixed at both ends. B. Earth spinning about its own axis C. Ball bouncing between two rigid vertical walls D. Particle moving in a circle with uniform speed.
62	In which case dose the potential energy decreases?	 A. On compressing a spring B. On stretching s spring C. One moving a body against gravitational force D. One the rising of an air bubble in water
63	If the metal bob is a simple pendulum is replaced by a wooden bob, then its time period will	A. Increase B. Decreases C. Remain the same D. First 'A' then 'B'
64	If the period of oscillation of mass (M) suspended from a spring is 2s, then the period of mass 4M will be	A. 1 s B. 2 s C. 3 s D. 4 s
65	The time period of a simple pendulum is 2 seconds if its length is increased by 4 times then its period becomes	A. 16 s B. 12 s C. 8 s D. 4 s
66	When the displacement is half of the amplitude the ratio of potential energy to the total energy is	A. 1/2 B. 1/4 C. 1 D. 1/8
67	To make the frequency double of na oscillator we have to	A. Double the massB. Half the massC. Quadruple the massD. Reduce the mass to one-fourth
68	In a simple harmonic motion (SHM) which of the following does not hold?	 A. The force on the particle is maximum at the ends B. The acceleration is minimum at the mean position C. The potential energy is maximum at the mean position D. The kinetic energy is maximum at the mean position.

69	A pendulum clock set to give correct time in Karachi is taken to Quetta it would give correct time if	Increased B. The mass of the pendulum is decreased C. The length of the pendulum os increased D. The length of the pendulum is decreased
70	In a simple harmonic motion the kinetic energy (KE) and the potential energy (PE), are such that throughout the motion	A. KE remains constant B. PE remains constant C. KE/PE is constant D. KE + PE remains constant
71	When sound waves travel from air to water which of these remains constant?	A. Velocity B. Frequency C. Wavelength D. All the above
72	Two sources of sound are said to be coherent if	 A. They produce sounds of equal intensity B. They produce sounds of equal frequency C. They produce sound waves vibrating with the same phase D. They produce sound waves with zero or constant phase difference all instant of time
73	The temperature at which the speed of sound becomes double as was at 27° C is	A. 273°C B. 0°C C. 927°C D. 1027°C
74	For production of beats the two sources must have	 A. Different frequencies and same amplitude B. Different frequencies C. Different frequencies same amplitude and same phase D. Different frequencies and same
75	If the amplitude of sound is doubled and the frequency reduced to one-fourth the intensity of sound at the same point will be	phase. A. Increasing by a factor of 2 B. Decreasing by a factor of 2 C. Decreasing by a factor of 4 D. Unchanged
76	With the propagation of a longitudinal wave through a material medium the quantities transmitted in the propagation direction are	A. Energy momentum and mass B. Energy C. Energy and mass D. Energy and linear momentum
77	At a certain instant a stationary transverse wave is found to have maximum kinetic energy the appearance of string of that instant is:	A. Sinusoidal shape with amplitude A/3 B. Sinusoidal shape with amplitude A/2 C. Sinusoidal shape with amplitude A D. Straight line
78	Velocity of sound in a diatomic as is 300 m/sec what is its rms velocity	A. 400 m/sec B. 40 m/sec C. 430 m/sec D. 300 m/sec
79	Mechanical waves on the surface of a liquid are	A. Transverse B. Longitudinal C. Torsional D. Both transverse and longitudinal
80	The distance between node and anti-node is	A. λ B. λ/2 C. λ/4 D. 2λ
81	One cannot see through fog because	 A. Fog absorbs light B. The refractive index of fog is infinity C. Light suffers total reflection at the droplet in a fog D. Light is scattered by the droplets in fog
82	A sun rise or sun set, the sun looks reddish because.	A. The sun is coldest at these timesB. Of the effects of reflection and refractionC. The sun is hottest at these timesD. Of the scattering of light
83	A prism splits a beam of white light into its seven constituent colors this is so because	 A. Phase of different colors is different B. Amplitude of different colors is different C. Energy of different colors is different D. Velocity of different colors is

		D. velocity of unforcent colors is different
84	The twinkling of stars is due to	 A. The fact that stars do not emit light continuously B. The refractive index of the earth's atmosphere fluctuate C. Intermittent absorption of star light by its own atmosphere D. None of them
85	Light appears to travel in straight lines since	 A. It is not absorbed by the atmosphere B. It is reflected by the atmosphere C. Its wavelength is very small D. Its velocity is very large
86	Which one of the following phenomena is not explained by Huygen's construction of wavefront?	A. Refraction B. Reflection C. Diffraction D. Origin of spectra
87	If yellow light emitted by sodium lamp in Young's double slit experiment is replaced by monochromatic blue light of the same intensity	A. Fringe width will decrease B. Fringe width will increase C. The fringe width will remain unchanged D. Fringes will become less intense
88	The contrast in the fringes in any interference pattern depends on	A. Fringe width B. Intensity ratio of the sources C. Distance between the slits
89	Huygen's wave theory of light cannot explain	D. Wavelength A. Diffraction B. Interference C. Polarization D. Photoelectric effect
90	Relation between pressure (P) and energy (E) of a gas is	A. P = 2/3 E B. P = 1/3 E C. P = 3/2 E D. P = 3 E
91	The number of translation degrees of freedom for a diatomic gas is	A. 2 B. 3 C. 5 D. 6
92	At constant volume temperature is increased then	 A. Collision on walls will be less B. Number of collisions per unit time will increase C. Collisions will be in straight lines D. Collisions will not change
93	Which of the following is not thermo dynamical function?	A. Enthalpy B. Work done C. Gibb's energy D. Internal energy
94	Absolute temperature can be calculated by	A. Mean square velocity B. Motion of the molecule C. Both (A) and (B) D. None of these
95	Boyle's law is applicable in	A. Isochoric process B. Isothermal process C. Isobaric process D. Isotonic process
96	The product of the pressure and volume of an ideal gas is	 A. A constant B. Approximately equal to the universal gas constant C. Directly Proportional to its temperature D. Inversely proportional to its temperature
97	At 0° K which of the following properties of a gas will be zero?	A. Kinetic energy B. Potential energy C. Vibrational enegy D. Density
98	What is the ratio of r.m.s velocity for O_2 to H_2 ?	A. 1/4 B. 4 C. √4 : 1 D. 1 : √4
99	What is the average energy of N molecules of monoatomic gas?	A. 1/2 NKT B. NKT C. 3/2 NKT

		D. 5/2 NkT
100	Two point charge +3 μ C and +8 μ C repel each other with a force of 40 N. if a charge of -5 μ C is added to each of them then the force between will become	A10N B. +10N C. +20N D20N
101	In a Millikan's oil drop experiment the charge on an oil drop is calculated to be 6.35 x 10-19 C. The number of excess electrons on the drop is	A. 3.9 B. 4 C. 4.2 D. 6
102	A point charge Q is placed at the mid-point of a line joining two charges 4q and q. if the net force on charge q is zero. then Q must be equal to	Aq B. +q C2q D. +4q
103	Two point charges placed at distance of 20 cm in air repel each other with a certain force. When a dielectric slab of thickness 8 cm and dielectric constant K is introduced between these point charges force of interaction becomes half of its previous value Then K is approximately.	A. 2 B. 4 C. √2 D. 1
104	When a Na ion and a CI ion are placed in air a force F acts between them when they are separated by a distance of 1 cm from each other the permittivity of air and the dielectric constant of water are ϵ_0 and K respectively When a piece of salt is placed in water then the force between Na ⁺ and CF ions separated by a distance of 1 cm will be	A. F B. FK/ε ₀ C. F/Kε ₀ D. F/K
105	A charge Q is divided into two parts q and Q - q and separated by a distance R. the force of repulsion between them will be maximum when:	A. $q = Q/4$ B. $q = Q/2$ C. $q = Q$ D. None of these
106	Two points charges A and B separated by a distance R attract each other with a force of 12×10^{-3} N. The force between A and B when the charges on them are doubled and distance is halved	A. 1.92 N B. 19.2 N C. 12 N D. 0.192 N
107	The excess (equal in number) of electrons that must be placed on each of two small spheres spaced 3 cm apart. with force of repulsion between the spheres to be 10^{-19} N is	A. 25 B. 225 C. 625 D. 1250
108	A ten-ohm electric heater operates on a 110 V line Calculate the rate at which it develops heat in watts:	A. 1310 W B. 670 W C. 810 W D. 1210 W
109	Two electric bulbs of 200 W and 100 W have same voltage.If R1 and R2 be their resistance respectively then	A. R ₁ = 2R ₂ B. <span style="font-size:
14.4444465637207px;">R ₂ <span style="font-size:
14.4444465637207px;">R ₂ <span style="font-size:
14.4444465637207px;">&hbsp= 2R ₁ C. <span style="font-size:
14.4444465637207px;">R ₂ <span style="font-size:
14.4444465637207px;">R ₂ <span style="font-size:
14.4444465637207px;">R ₂ D. <span style="font-size:
14.4444465637207px;">R ₁ Span style="font-size: 14.4444465637207px;">R ₁ <span style="font-size:
14.4444465637207px;">R ₁ <span style="font-size:
14.4444465637207px;">R ₂ <span style="font-size:
14.4444465637207px;">R ₂
110	A (100 W, 200 V) bulb is connected to a 160 V power supply. The power consumption would be	A. 64 W B. 80 W C. 100 W D. 125 W
111	A 50-volt battery is connected across 10-ohm resistor. The current is 4.5 A. The internal resistance of the battery is	A. Zero B. 0.5 Ω C. 1.1 Ω D. 5.0 Ω
112	If 2.2 kilowatt power is transmitted through a 10 ohm line at 22000 volt, the power loss in he form of heat will be	A. 0.1 watt B. 1 watt C. 10 watt D. 100 watt
113	The conductivity of a superconductor is	A. Infinite B. Very large C. Very small D. Zero
114	A piece of fuse wire melts when a current of 15 ampere flows through it. With this current, if it dissipates 22.5 W. the resistance of fuse wire will be	A. Zero B. 10 Ω C. 1 Ω D. 0.10 Ω

		·
115	A conducting wire is drawn to double its length Final resistivity of the material will be	A. Double of the original oneB. Half of the original oneC. One-fourth of the original oneD. Same as original one
116	In a voltmeter the conduction takes place due to	A. Electrons only B. Holes only C. Electrons and holes D. Electrons and ions
117	A voltmeter has resistance of 2000 ohms and it can measure up to 2V. If we want to increase its range to 10V then required resistance in series will be	A. 2000 Ω B. 4000 Ω C. 6000 Ω D. 8000 Ω
118	If a diamagnetic substance is brought near north or south pole of a bar magnet it is	 A. Attracted by the poles B. Repelled by the poles C. Repelled by north pole and attracted by the south pole D. Attracted by the north pole and repelled by the south pole
119	A moving charge will gain energy due to the application of	A. Electric field B. Magnetic C. Both of these D. None of these
120	Choose the correct statement	 A. Both an ammeter and voltmeter should have small resistance B. Both an ammeter and a voltmeter should have large resistance C. An ammeter should have large resistance and a voltmeter should have small resistance D. An ammeter should have small resistance and a voltmeter should have small resistance and a voltmeter should have large resistance
121	The magnetic moment of a circular coil carrying current is	 A. Directly proportional to the length of the wire in the coil B. Inversely proportional to the length of the wire in the coil C. Directly proportional to the square of the length of the wire in the coil D. Inversely proportional to the square of the length of the wire in the coil
122	Shunt required in an ammeter of resistance R to decrease its deflection from 30 ampere to 10 ampere is	A. R/4 B. R/3 C. R/2 D. R
123	Which of the following particle would experience the largest magnetic force when projected with the same velocity perpendicular to a magnetic field?	A. Proton B. Electron C. He ⁺ D. Li ⁺
124	If in a moving coil galvanometer a current 1 produces a deflection $\boldsymbol{\theta}$ then	A. i ∞ tan θ B. i ∞ θ ² C. i ∞ θ D. i ∞ √θ
125	In an ac circuit with voltage V and current 1 the power dissipated is	A. VI B. 1/2 VI C. 1/ $\sqrt{2}$ VI D. Depends on the phase between V and 1
126	The primary winding of transformer has 500 turns whereas its secondary has 5000 turns The primary is connected to an a.c supply of 20 V, 50 Hz The secondary will have an output of	A. 200 V, 50 Hz B. 2 V, 50 Hz C. 200 V, 500 Hz
127	Which quantity is increased in step-down transformer?	A. Current B. Voltage C. Power D. Frequency
128	The average power dissipation in a pure capacitor in AC circuit is	A. 1/2 CV ² B. CV ² C. 2CV ² D. Zero
129	In an L-R circuit time constant is that time in which current grows from zero to the value	A. 0.63 _o B. <span style="font-size:
14.4444465637207px;">0.50 _o C. <span style="font-size:
14.4444465637207px;">0.73

0. 0.73

		l _o D. <span style="font-size:
14.4444465637207px;">I _o
130	Quantity that remains unchanged in a transformer is	A. Voltage B. Current C. Frequency D. None of these
131	The direction of induced current is such that it opposes the very cause that has produced it This is the law of	A. Lenz B. Faraday C. Kirchoff D. Fleming
132	A particle is moving in a uniform magnetic field then	 A. Its momentum changes but total energy remains the same B. Both momentum and total energy remains the same C. Both changes D. Total energy change but momentum remains
133	A particle moving in a magnetic field has increase in its velocity then its radius of the circle	A. Decreases B. Increases C. Remains the same D. Becomes half
134	In LCR series AC circuit the phase angle between current and voltage is	A. Any angle between 0 and $\pm \pi/2$ B. $\pi/2$ C. π D. Any angle between 0 and $\pi/2$
135	In an AC circuit a resistance of R ohm i connected in series with an inductance L if phase angle between voltage and current be 45° the value of inductive reactance will be	A. R/4 B. R/2 C. R
136	A 220 V, 50 Hz, AC source is connected to an inductance of 0.2.H and a resistance of 20 ohm in series What is the current in the circuit?	A. 10 A B. 5 A C. 33.3 A D. 3.33 A
137	A capacitor acts as an infinite resistance for	A. AC B. DC C. Both AC and DC
138	An ideal choke (used along with fluorescent tube) would be	A. A pure resistor B. A pure capacitor C. A pure inductor D. A combination of an inductor and a capacitor
139	The peak voltage in a 200 volt A.C supply is nearly	A. 220 B. 253 C. 311
140	In a capacitive circuit	 A. Current leads voltage by phase of π/2 B. Voltage leads current by phase of π/2 C. Current and voltage are in same phase D. Sometime current and sometime voltage leads
141	Energy is stored in the choke coil in the form of	A. Heat B. Magnetic energy C. Electric energy D. Electro -magnetic energy
142	The henry is the unit for	A. Resistance B. Magnetic flux C. Magnetic field D. Inductance
143	The dimensional formula for the modulus of elasticity is same as that for.	A. Stress B. Strain C. Velocity D. Surface tension
144	Which of the modulus of elasticity is involved in compressing a rod to decrease its length?	A. Young's modulus B. Bulk modulus C. Modulus of rigidity D. None of the above
		A. Steel is cheaper B. Young's modulus of steel is more

than that of copper C. Young's modulus of copper is more than that of steel D. Steel is less likely to be oxidized

		D. Steel is less likely to be oxidized
146	The modulus of rigidity of a liquid is	A. Zero B. 1 C. Infinity D. A value not one of those mentioned above
147	How does the Young's modulus vary with the increase of temperature?	A. Decrease B. Increase C. Remains constant D. First increases and then decreases
148	A wire is stretched to double of its length. The strain is	A. 2 B. 1 C. Zero D. 0.5
149	According to the Hooke's law the force required to change the length of a wire by '1' is proportional to	A. 1 ⁻² B. 1 ⁻¹ C. 1 D. 1 ²
150	For obtaining appreciable extension the wire should be	A. Short and thin B. Long and thin C. Short and tick D. Long and thick
151	A cable breaks if stretched by more than 2 mm it is cut into two equal parts how much either part can be stretched without breaking?	A. 0.25 m B. 0.5 m C. 1 mm D. 2 mm
152	In case of p-n junction diode at high value of reverse bias the current rises sharply The value of reverse bias is known as	A. Cut off voltage B. Zener voltage C. Inverse voltage D. Critical voltage
153	In a common base transistor circuit the current gain is 0.98.On changing the emitter current by 5.00 mA, the change in collector current is:	A. 0.196 mA B. 2.45 mA C. 4.9 mA D. 5.1 mA
154	When we apply reverse bias to a junction diode it	A. Lowers the potential barrier B. Raises the potential barrier C. Increase the majority carrier current D. Decrease the majority carrier current
155	When boron is added as an impurity to silicon the resulting material is	A. n type conductor B. n type semiconductor C. p-type conductor D. p-type semiconductor
155	When boron is added as an impurity to silicon the resulting material is A p-n junction has a thickness of the order of	B. n type semiconductor C. p-type conductor
		B. n type semiconductor C. p-type conductor D. p-type semiconductor A. 1 cm B. 1 mm C. 10 ⁻⁶ cm
156	A p-n junction has a thickness of the order of The part of a transistor which is heavily doped to produce large number of majority carriers	B. n type semiconductor C. p-type conductor D. p-type semiconductor A. 1 cm B. 1 mm C. 10 ⁻⁶ cm D. 10 ⁻¹² cm A. Emitter B. Base C. Collector D. Any of the above depending on
156	A p-n junction has a thickness of the order of The part of a transistor which is heavily doped to produce large number of majority carriers is	 B. n type semiconductor C. p-type conductor D. p-type semiconductor A. 1 cm B. 1 mm C. 10⁻⁶ cm D. 10⁻¹² cm A. Emitter B. Base C. Collector D. Any of the above depending on nature of transistor. A. Number of electrons increases while that of holes decreases B. Number of electrons and holes remains same D. Number of electrons and holes

161	A photocell with a constant p.d of V volt across it illuminated by a point source from a distance of 25 cm. When the source is moved to a distance of 1 m, the electrons emitted by the photocell	A. Carry 1/4th their previous energy B. Are 1/6th as numerous as before C. Are 1/4th as numerous as before D. Carry 1/4th their previous momentum
162	A monochromatic source of light is placed at a large distance d from a metal surface Photoelectrons are ejected at rate n,kinetic energy being E. If the source is brought nearer to distance d/2, the rate and kinetic energy per photoelectron become nearly	A. 2n and 2E B. 4n and 4e C. 4n and E D. N and 4E
163	The frequency of the incident light falling on a photosensitive metal plate is doubled the kinetic energy of the emitted photoelectrons is	A. Double the earlier value B. Unchanged C. More than doubled D. Less than doubled
164	Ultra-violet radiation of 6.2 eV falls on an aluminium surface K.E of fastest electrons emitted is (work function = 4.2 eV)	A. 3.2 x 10-21 J B. 3.2 x 10-19 J C. 7 x 10-25 J D. 9 x 10-32 J
165	A photoelectric cell converts	 A. Electrical energy to light energy B. Light energy to light energy C. Light energy to electrical energy D. Light energy to elastic energy
166	The essential distinction between X-rays and y-rays is that	 A. y-rays have smaller wavelength than X-rays B. y-rays emanate from nucleus while X-rays emanate from outer part of the atom C. y-rays have greater ionizing power than X-rays D. y-rays are more penetrating than X-rays
167	The minimum wavelength of the X-rays produced by electrons accelerated through a potential difference of V volts is directly proportional to	A. √V B. V ² C. 1/√V D. 1/V
168	There are discrete energy levels in atoms. It was first experimentally demonstrated by	A. Rutherford's experiment B. Frank Hertz experiment C. Marsden's experiment D. Sommerfield experiment
169	Which of the following sources give discrete emission spectrum?	A. Incandescent electric bulb B. Sun C. Mercury vapour lamp D. Candle
170	In which of the following states does the incandescent substance give continuous spectrum?	A. Vapours in atomic state B. Vapours in molecular state C. Solid or fluid in bulk state D. Solid or fluid in plasma state
171	Band spectrum in produced by	A. H B. He C. H ₂ D. Na
172	Who explained the origin of the Fraunhofer lines?	A. Fraunhoffer B. Kirchhoff C. Fresnel D. Snell
173	The nuclear model of atom was proposed by	A. J.J Thomson B. E.Rutherford C. Neil Bohr D. Summerfield
174	To explain his theory Bohr used	A. Conservation of linear momentum B. Conservation of angular momentum C. Conservation of quantum frequency D. Conservation of energy
175	In which region of electromagnetic spectrum does the Lyman series of hydrogen atom lie	A. Ultraviolet B. Infra red C. Visible D. X-ray
176	Electrons in the atom are held in the atom due to	A. Coulomb forcesB. Nuclear forcesC. Gravitational forcesD. Van der Waal's forces
		A. ₇ N ¹⁴ B. ₅

177	The nucleus 6C12 absorbs an energetic neutron and emits a beta particle (β) The resulting nucleus is	size: 14.4444465637207px;">B ¹³ C. ₇ <span style="font-
size:
14.4444465637207px;">N ¹³ D. ₆ <span style="font-
size:
14.4444465637207px;">N ¹³
178	The mass defect for the nucleus of helium is 0.0303 a.m.u What is the binding energy per nucleon for helium in MeV?	A. 28 B. 7 C. 4 D. 1
179	When a hydrogen atom is bombarded the atom is excited to the n = 4 state of hydrogen atom. The energy released when the atom falls from n = 4 state to the ground state is	A. 1.275 eV B. 12.75 eV C. 5 eV D. 8 eV
180	As the electron in Bohr orbit of hydrogen atom passes from stat $n = 2$ to $n = 1$ the kinetic energy K and potential energy U change as	A. K two-fold,U also two-fold B. K four-fold,U also four-fold C. K four-fold,U two-fold
181	The half life of a radio-isotope is 5 years The fraction of atoms decayed in this substance after 15 years will be	A. 1 B. 3/4 C. 7/8 D. 5/8
182	The structure of solids is investigated by using	A. Cosmic Rays B. X-rays C. Intra red Radiation D. y-rays
183	The de broglie wave corresponding to a particle of mass m and velocity v has a wavelength associated with it	A. h/mv B. hm v C. mh/v D. m/hv
184	The average binding energy of a nucleon inside an atomic nucleus is about	A. 8 MeV B. 8 eV C. 8 Joules D. 8 ergs