NAT I Engineering Mathematics | Sr | Questions | Answers Choice | |----|---|--| | 1 | 0 (zero) is | A. A irrational number B. A rational number C. A negative integer D. A positive number | | 2 | 6 is | A. A prime integer B. An irrational number C. A rational number D. A odd integer | | 3 | $\sqrt{23}$ is | A. A rational number B. A irrational number C. An even integer D. A factor of 36 | | 4 | 3/2 is | A. An irrational number B. Whole number C. A positive integer D. A rational number | | 5 | Every prime number is also | A. Rational number B. even number C. Irrational number D. multiple of two numbers | | 6 | $\pi/3$ is | A. A positive integer B. A negative integer C. A natural number D. An irrational number | | 7 | The value of x, and y, when $(x+iy)^2=5+4i$ | A. X=2, y=-1
B. X=-2, y=1
C. X=2, y=-i
D. X=2, y=2 | | 8 | If $Z=(1,2)$. tjem $Z^{-1}=?$ | A. (0.2, 0.4)
B. (-0.2, 0.4)
C. (0.2, -0.4)
D. (-0.2, -0.4) | | 9 | If $Z_1 = 1+i$, $Z_2 = 2+3i$, then $ Z_2-Z_1 =?$ | A. √3 I
B. √7
C2-1
D. √5 | | 10 | If Z ₁ = $\sqrt{-36}$, Z ₂ = $\sqrt{-25}$, Z ₃ = $\sqrt{-16}$, then what is the sum of Z ₁ , Z ₂ and Z ₃ ? | A. √3 I
B. √7
C2-1
D. √5 | | 11 | What is the conjugate of -7 -2i ? | A7 + 2i
B. 7 + 2i
C. 7-2i
D. √53 | | 12 | For any set X, X∪X is | A. 15
B. 15i
C15i
D15 | | 13 | Given X, Y are any two sets such that number of elements in X=28, number of elements in set Y=28, and number of elements in set X \cup Y=54, then number of elements in set X \cap Y= | A7 + 2i
B. 7 + 2i
C. 7-2i
D. √53 | | 14 | Let A, B, and C be any sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$ then | A. A ≠ C
B. B = C
C. A = B
D. A ≠ B | | 15 | The complement of set A relative to universal set U is the set | A. X
B. X
C. φ
D. Universal set | | 16 | The multiplicative inverse of x such that $x = 0$ is | Ax B. does not exist C. 1/x D. 0 | |----|--|---| | 17 | Multiplicative inverse of "1" is | A. 4
B. 3
C. 2
D. 1 | | 18 | In a school, there are 150 students. Out of these 80 students enrolled for mathematics class, 50 enrolled for English class, and 60 enrolled for Physics class. The student enrolled for English cannot attend any other class, but the students of mathematics and Physics can take two courses at a time. Find the number of students who have taken both physics and mathematics. | A. 40
B. 30
C. 50
D. 20 | | 19 | Which of the following is the subset of all sets? | A. A ≠ C
B. B = C
C. A = B
D. A ≠ B | | 20 | The set { {a,b} } is | A. $\{X/X \in A \land x \in U\}$
B. $\{X/X \notin A \land x \in U\}$
C. $\{X/X \in A \text{ and } x \notin U\}$
D. A-U | | 21 | The set of the first elements of the ordered pairs forming a relation is called its | Ax B. does not exist C. 1/x D. 0 | | 22 | The graph of a quadratic function is | A. Circle B. Ellipse C. Parabola D. Hexagon | | 23 | The set of complex numbers forms a group under the binary operation of | A. 0
B. ±1
C. 1
D. {0,1} | | 24 | The multiplicative inverse of -1 in the set {1-,1} is | A. 40
B. 30
C. 50
D. 20 | | 25 | The set {1, -1, i, -i}, form a group under | A. addition B. multiplication C. subtraction D. None | | 26 | The set of all positive even integers is | A. Φ
B. {1,2,3}
C. {Φ}
D. {0} | | 27 | The statement that a group can have more than one identity elements is | A. True B. False C. Fallacious D. Some times true | | 28 | The set (Q, .) | A. Infinite set B. Singleton set C. Two points set D. None | | 29 | The set (Z, +) forms a group | A. Function on B B. Range C. Domain D. A into B | | 30 | If A = $[a_{ij}]$ and b = $[b_{ij}]$ are the matrices of the order 3x3 then A-B= | A. Circle B. Ellipse C. Parabola D. Hexagon | | 31 | Two matrices A and B are conformable for multiplication (AB) if and only if | A. Addition B. Multiplication C. Division D. Subtraction | | 32 | If A ≠ 0 then A is called | A. 1
B1
C. ±1
D. 0 | | | | A. addition
B. multiplication | | 33 | If A and B are matrices of same order than (A + B)(A + B)= | C. subtraction
D. None | |----|---|---| | 34 | In general matrices do not satisfy | A. Not a group B. A group w.r.t. subtraction C. A group w.r.t. division D. A group w.r.t. multiplication | | 35 | If any two rows (or any two columns) of a square matrix are inter changed, the determinant of the resultant matrix is | A. True B. False C. Fallacious D. Some times true | | 36 | If A and B are matrices such that AB=BA=I then | A. A and B are multiplicative inverse of each other B. A and B are additive inverses of each other C. A and B are singular matrices D. A and B are equal | | 37 | If the order of A is n x m. Then order of kA is | A. Forms a group B. Does not form a group C. Contains no additive identity D. Contains no additive inverse | | 38 | An m x n matrix is said to be rectangular if | A. Forms a group w.r.t. addition B. Non commutative group w.r.t. multiplication C. Forms a group w.r.t. multiplication D. Doesn't form a group | | 39 | If α and β be irrational roots of a quadratic equation, then | A. α = b/a and β = ca
B. α = a/b and β = -c/a
C. α ²
+ β ² = 1
D. α = -b/a and β = c/a | | 40 | The degree of the polynomial $2x^4 + 3x^2 + 16x + 28 = x^4 + 2x^2$ is | A. [a _{ij -} b _{ji}] B. [a _{ij -} b _{ij}] C. [a _{ij -} b _{ij}] D. [a _{ij -} b _{ij}] | | 41 | One of the roots of the equation $2x^2 + 3x + n = 0$ is the reciprocal of the other, then $n =$ | A. Both A,B have the same number of columns B. Both A,B do not have the same order C. Number of col A is same as number of rows of B D. Number of rows of A is same as number of col of B | | 42 | The cube roots of unity ω = | A. 1-i $\sqrt{-3}$ / 2
B1+i $\sqrt{-3}$ / 2i
C1+i $\sqrt{3}$ / 2
D. 1+i $\sqrt{3}$ / 2 | | 43 | Complex roots of real quadratic equation occur in | A. Nilpotent matrix B. Singular matrix C. Non singular matrix D. Diagonal matrix | | 44 | The value of the polynomial $3x^3 + 4x^2 - 5x + 4$ at $x = -1$ is | A. A ² + B ² B. A ² + B ² + 2AB C. A + B D. A ² + B ² + AB+BA | | 45 | If the sum of the roots of $(a + 1)x^2 + (2a + 3)x + (3a + 4) = 0$ is -1, then product of the roots is | A. Commutative law w.r.t multiplication B. Associative law w.r.t addition C. Distributive law w.r.t addition D. Multiplication of a scalar with the matrix | | 46 | Two natural numbers whose sum is 25 and difference is 5, are | A. 25, 20
B. 20, 10
C. 20, 5
D. 15, 10 | | 47 | The length of rectangle is twice as much as its breadth. If the perimeter is 120 cm, the length of the rectangle is | A. Same as the original determinant B. Additive inverse of the original determinant C. Both A and B D. Adj of the original matrix | | | | A. A and B are multiplicative inverse of | | 48 | $\omega^{88} = ?$ | each other B. A and B are additive inverses of each other C. A and B are singular matrices D. A and B are equal | |----|--|--| | 49 | ω^n = ?, when n = 3k | A. 0
B. ω
C. 1
D. 1 / ω | | 50 | The number of real roots in cube roots of 8 is ? | A. n x m
B. m x n
C. km x n
D. m x kn | | 51 | The sum of the ages of Nazish and his son is 56 years. Eight years ago. Nazish was 3 time as old as his son. How old is the son now? | A. m = n
B. m ≠ n
C. mn = 1
D. mn = 0 | | 52 | The two consecutive positive integers whose product is 56 are | A. 7, 8
B. 14, 4
C. 28, 2
D. 56, 1 | | 53 | Which is a proper rational fraction | A. 3x - 7/x ² +4 B. 2x ² - 5/x ² +4 C. 3x ⁴ /2x ² -15 D. All are proper rational fraction | | 54 | 2/(x+1)(x-1) = A/x+1 + B/x-1 corresponds to | A. α = b/a and β = ca
B. α = a/b and β = -c/a
C. α ²
+ β ² = 1
D. α = -b/a and β = c/a | | 55 | x-1/(x+2)(x-2) = | A. 4/3(x-4) -1/3(x-1)
B. 3/4(x+2) + 1/4(x-2)
C. 2/3(x-2) - 4/3(x+2)
D. 3/x - 2/x+1 | | 56 | $(x+2)^2 = x^2 + 4x + 4$ is | A. 1
B. 2
C. 3
D. 4 | | 57 | $x^2 + 2x - 25 = 0$ is | A. 1
B. 2
C. 3
D. 4 | | 58 | $1/x^2$ -1 = ? (in case of making partial fraction) | A. Ax +B/x ² -1
B. A/x + B/ x- 1
C. A/ x+1 + B/x-1
D. None | | 59 | A fraction in which the degree of the numerator is less than the degree of the denominator is called | A. 1-i √-3 / 2
B1+i √-3 / 2i
C1+i √3 / 2
D. 1+i √3 / 2 | | 60 | A relation in which the equality is true only for some values of the unknown variable is called | A. An identity B. An equation C. A polynomial D. Inverse function | | 61 | Partial fraction of 1/x ³ -1 will be of the form | A. Conjugate pair B. ordered pair C. reciprocal pair D. quadratic function | | 62 | The equation of two polynomials $P(x)/Q(x)$ where $Q(x) \neq 0$ with no common factor is called | A. 12
B. 1
C. 10
D10 | | 63 | The nth term of A,P:1,5,9,15is given by | A. 4n - 3
B. 4n + 1
C. 3n -4
D. 4n +3 | | 64 | If the 9^{th} tern of A.P is 8 and the 4^{th} term is 20. then the first term is | A. 1
B. 2
C2
D1 | | | | | | 65 | The nth term in G.P 3,-6,12, is | A. 25, 20
B. 20, 10
C. 20, 5
D. 15, 10 | |----|---|---| | 66 | The sum of the series 1+5+9+13+17+21+25+29 is: | A. 10 cm
B. 20 cm
C. 30 cm
D. 40 cm | | 67 | If a and b are any two distinct negative real numbers and G-ab where A.G.H represent arithmetic geometric and harmonic means then | A. 1
B. ω ²
C. ω
D. 0 | | 68 | The sum of the interior angles for a 16 sided polygon is | A. 0
B. ω
C. 1
D. 1 / ω | | 69 | The difference of two consecutive terms of an A.P is called | A. Zero B. One C. Four D. Infinite | | 70 | Write the first four term of the arithmetic sequence if a_1 = 5 and other three consecutive terms are 23,26,29 | A. 18 years B. 36 years C. 8 years D. 16 years | | 71 | The common difference of the sequence 7,4,1is | A. 1
B3
C. 5
D. 0 | | 72 | Find the geometric mean between 4 and 16 | A. 7, 8
B. 14, 4
C. 28, 2
D. 56, 1 | | 73 | A sequence of numbers whose reciprocals forms an arithmetic sequence is called | A. Harmonic series B. Arithmetic series C. Harmonic sequence D. Geometric sequence | | 74 | The fifth term of the sequence $a_n = 3n - 2$ is | A. 3
B3
C. 13
D13 | | 75 | Sum of integers starting from to n is | A. n(n+1)/4
B. n(n+1)/6
C. n(n+1)/2
D. n(n-1)/2 | | 76 | The average of first 100 integers is= | A. 50 1/2
B. 25 1/4
C. 100
D. 5050 | | 77 | The number of ways in which we can courier 5 packets to 10 cities is | A. 2 x 5 ^o B. 5 ¹⁰ C. 10 ⁵ D. 2 ¹⁰ | | 78 | Two dice are rolled The number of possible out come in which at least one die shows 2 is? | A. 5
B. 12
C. 11
D. 7 | | 79 | If A and B are two events then P(A∪B) =? (when A and B are disjoint) | A. $P(A) - P(B)$
B. $P(A) \times P(B)$
C. $P(A) + P(B)$
D. $P(A) + P(B) - P(A \cap B)$ | | 80 | A die is thrown what is the probability that there is a prime number on the top? | A. 1/2
B. 1/3
C. 1/6
D. 2/3 | | 81 | If C_{r}^{n} , $P_{r}^{n} = 24:1$ then $r = ?$ | A. 1
B. 2
C. 3
D. 4 | | 82 | The number of diagonals of a six sided figure are | A. 9
B. 6
C. 12
D. 3 | A. ∠3, ∠U | 83 | The number of ways in which 5 distinct toys can be distributed among 3 children is | A. 3 ⁵ B. 5 ³ C. C ⁵ ₃ D. P ⁵ ₃ | |----|--|--| | 84 | If P(E) is the probability that can event will occur then P(E)= | A. 1
B. 0.5
C. 2
D. 0 | | 85 | A standard deck of 52 cards shuffled what is the probability of choosing the queen of the diamonds | A. 1/5
B. 1/13
C. 5/52
D. 1/52 | | 86 | How many elements are in the sample space of two rolling dies | A. 6
B. 12
C. 18
D. 36 | | 87 | Corola available in 5 models 8 colours and 3 sizes how many Corola must a local dealer have no hand in order to have one of each kind avialable? | A. 24
B. 120
C. 16
D. 39 | | 88 | How many different arrangements of the letters in the word QABABA are Possible? | A. 720
B. 40
C. 60
D. 30 | | 89 | Given eight points in a plane no three of which are collinear how many lines do the points determine? | A. 16
B. 64
C. 28
D. 36 | | 90 | There are 30 Red, 20 Green and some Blue bells in a bag if the probability of finding a Red ball is 1/3,how many are red balls in the bag | A. 120
B. 20
C. 40 | | 91 | There are 30 Red balls and 25 Green balls in a bag of a ball is drawn from the bag randomly what is the probability that a Blue ball comes out? | D. 90
A. 1
B. 0.5
C. 0
D. None | | 92 | 1+2+3++n=? | A. n(n +1)/2
B. n +1/2
C. n(n +1)(2n +1)/6
D. n ³ | | 93 | An angle of one radian is equivalent to | A. 90 ^o B. 60 ^o C. 67 ^o D. 57 ^o , 18 ^o | | 94 | The associative angle of 280 ^o is | A. 100 ^o B. 10 ^o C. 80 ^o D80 ^o | | 95 | If $\sin \theta = 3/5 \cos \theta =$ | A. 1/2
B. 3/5
C. 4/5
D. 1 | | 96 | An angle 0 is such that $\tan \theta = 1$ and $\cos \theta$ is negative then | A. Sin θ is positive
B. Cos $\theta = \sqrt{2}/4$
C. cos $\theta = -1$
D. sec θ is negative | | 97 | If in isosceles right angled triangle one side is a then hypotenuse is | A. a√2 B. a/2 C. a D. Cannot be determined by given | | 98 | If 0 is not an integral multiple of $\pi/2$ then $Cot^4 \theta$ + $Cot^2 \theta$ =? | A. Cosec ⁴ θ - Cosec ² θ B. Tan θ - Tan ² θ C. Cosec ² θ + Cosec θ D. Sinθ Cosθ | | 99 | Domain of Cosecθ is | A. is R but θ = n π
B. is R but θ ≠ n π
C. is R but θ ≠ 2n π
D. is R but θ ≠ n π /2 | | | | | | 100 | In 30,60,90 triangle if the smallest side is 6 than the side opposite to the angle of $60^{\rm o}$ is | A. 12
B. 3
C. 6√3
D. 6 | |-----|---|---| | 101 | Cse π/3 | A. 2
B. 1
C. 0
D. 2/√3 | | 102 | If a rectangle has an area $81x^2$ and length of 27x, then what is its width? | A. 3x B. 9x C. 3x ² D. 9x ² | | 103 | If $sin\theta = 1$ then $\theta =$ | A. 2nπ +π/2
B. 2nπ
C. 2π +n
D. Nπ +π/2 | | 104 | Sin 720° = | A. 1
B. 0
C. 2
D. 1/2 | | 105 | Cot 360° = | A. Undefined
B. 0.707
C0.5
D. 0 | | 106 | Sin (2π -θ) = | A. Cosθ
BSinθ
CSinθ
Dcosθ | | 107 | In the triangle Δ ABC, where C is the right angle Tan A + Tan B= | A. A +B B. C ² /AB C. A ² /BC D. B ² /AC | | 108 | If $Cos\alpha = 3/5$, $Cos\beta = 5/13$, then | A. $Cos(\alpha + \beta) = 33/65$
B. $Sin(\alpha + \beta) = 56/65$
C. $sin < sup > 2 < /sup > (\alpha + \beta/2) = 1/65$
D. $Cos(\alpha + \beta) = 63/65$ | | 109 | If 2 Sin x Cos 2 x = Sin x then? | A. $X = n\pi + \text{anbsp}; \pi/6$
B. $X = n\pi + \pi/3$
C. $X = n\pi + 1$
D. $X = n\pi + \text{anbsp}; \pi/2$ | | 110 | The value of Cos (1/2 Cos ⁻¹ 1/2) is equal to | A. √3/2
B3/4
C. 1/16
D. 1/4 | | 111 | Sin(a + b) + Sin(a-b) = | A. Sin a Cos b B. Sin a Sin b C. Sin a + Cos b D. Sin a - 2Cos b | | 112 | Period is Tan x/5 is | A. 5π
B. 4π
C. 2π
D. π/5 | | 113 | Cos 315° = | A. 0.707
B. 0.5
C. 1
D. 0 | | 114 | If Sin θ =Cos θ then θ = | A. 30°
B. 45°
C. 60°
D. 90° | | 115 | Sin x + Cos x=1 x= | A. π
B. π/2
C. π/3
D. π/4 | | 116 | If A = (3,8) and B = (5,6) then the distance between A and B is | A. 2√2
B. 2
C. 1
D. 6 | | 117 | What is the domain of y= Sin ⁻¹ x? | A1 ≤ x ≤1
B. 1 ≤ x ≤ 1
C. 0 ≤ x ≤ π | | | | Dπ/2 ≤ x ≤ π/2 | |-----|---|--| | 118 | What is the domain of $y = \cot^{-1} x$? | A. Set of irrational numbers only B. Set of all real numbers C. Set of integers only D. Set of complex numbers only | | 119 | What is the period of Cot x? | A. 2π
B. π
C. π/2
D. 4π | | 120 | Period of Sin 2x = | A. π
B. 4π
C. 2nπ
D. 2π | | 121 | Sin ⁻¹ (-x) =? | A. Sin ⁻¹ x BSin ⁻¹ x C. Cos ⁻¹ x DCos ⁻¹ x | | 122 | $Sin^{-1} x = ?$ | A. π/2- Sin ⁻¹ x B. π/2 -Cos ⁻¹ x CSin ⁻¹ x | | 123 | Tan $(\pi + Tan^{-1} x) = ?$ | DCos ⁻¹ x A. Tan x B. X Cx D. Cot ⁻¹ x | | 124 | $Sin^{-1} \sqrt{3/2} = ?$ | A. 2π/3
B. π/2
C. π/3
D. v/5 | | 125 | Sin-1 (√2/2)=? | A. π/2
B. π/3
C. 3π/4
D. 2π | | 126 | AreCot √3 =? | A. π/2
B. π
C. 2π
D. π/6 | | 127 | Which of the following is not defined? | A. Arcsin 1/9 B. ArcCos (-4/3) C. Arctan 11/12 D. Arccot (-4) | | 128 | Cos ⁻¹ (-x) = | A. π +cos ⁻¹ x B. π -sin ⁻¹ x C. π +sin ⁻¹ x D. π -cos ⁻¹ x | | 129 | If $Sin^{-1} x + cos^{-1} y = \pi$, then x and y are | A. Associative anglesB. Complementary anglesC. Reflex anglesD. Supplementary angles | | 130 | The principal value of $\sin^{-1}[\sqrt{3}/2]$ is | A. π/3
Bπ/3
C. 2π/3
D. 5π/3 | | 131 | 120° degrees are equal to how many radians? | A. $\pi/3$ radians
B. $2\pi/3$ radians
C. $\pi/4$ radians
D. $\pi/2$ radians | | 132 | In the figure PS is perpendicular to QR, if PQ = PR 26 and P8 = 24,then QR= | A. 10
B. 20
C. 40
D. 26 | | 133 | Area of ΔABC= | A. ab sin α B. 1/2 ab sin α C. 1/2 ac Sin γ D. 1/2 ac Sin β | | 134 | If you looking a high point from the ground then the angle formed is | A. Angle of elevation B. Angle of depression C. Right angle D. Horizon | | 135 | In the figure angle Δ is = | A. 15
B. 60 | | 100 | III uie liguie aligie A is - | C. 90
D. 20 | |-----|---|--| | 136 | If $Cos\theta = 0$, Then $\theta =$ | A. $n\pi/2$
B. $(2n + 1)\pi/2$
C. $(2n - 1)\pi/2$
D. $(n \pm 1)\pi/2$ | | 137 | Sin-1 [-1/2] = | A. ∏/3
B∏/6
C∏/3
D. ∏/6 | | 138 | Tan ⁻¹ 1/x = | A. Sin x B. Sec ⁻¹ X C. Cot ⁻¹ X D. Sin lx/cos- lx | | 139 | $Sin^{-1} (-x) =$ | A. Cos ⁻¹ 1/x BSin ⁻¹ X C. 1/sin-1x D. Sin ⁻¹ 1/x | | 140 | Sec ⁻¹ x= | A. Cos ⁻¹ 1/x B. Cosec ⁻¹ 1/x C. Cos-1 (-x) D. Tan ⁻¹ x | | 141 | $Cos^{-1} x =$ | A. ☐ = sin ⁻¹ x B. ☐ + sin ⁻¹ x C. ☐/2 - sin ⁻¹ x D. ☐/2 +sin ⁻¹ x | | 142 | In which quadrant is the solution of the equation $\sin x - 1 = 0$ | A. Il quadrants B. Il and IIl quadrants C. III and Iv quadrants D. I quadrant | | 143 | If θ= 60° then | A. $sin\ \theta = 1/2$
B. $tan\ \theta = cot 30^\circ$
C. $\theta = \pi/4$
D. $Sec\ \theta = 4$ | | 144 | If 1 + Cos x = 0 then x = | A. π +2n π
B. π + nπ
C. π - nπ
D. π/2 | | 145 | If x lies in $\{0, 2\pi\}$ and Cosec x = 2 then x = | A. π/ 6 and $5\pi/6$
B. π +2nπ
C. nπ
D. $2\pi/3$ and π/3 | | 146 | Which of the following is solution of $Tan^2 x = 1/3$ | A. 7π/6
B. 5π/6
C. π/6
D. All | | 147 | Which of the following is the solution of $Cot^2x = 1/\sqrt{3}$ | A. π/5
B. π/3
C. π/7
D. π/9 | | 148 | If $f(x) = x^3 - 2x^2 + 4x - 1$, then $f(-2) = ?$ | A. 0
B25
C. 5
D. 45 | | 149 | If f (x) = x/x^2 - 4 then which is not included in the domain of f(x) | A. 0
B2
C. 1
D. 4 | | 150 | $P(x) = 2x^4 - 3x^3 + 2x - 1$ is polynomial of degree | A. 1
B. 2
C. 3
D. 4 | | 151 | Which is not included in the domain of Cos ⁻¹ x | A. 0
B. 1
C1
D. 2 | | 152 | Which is an explicit function | A. y = x ² +2x-1 B. x ² +xy +y ² =2 C. xy ² -y +9/xy =1 D. All are | | 153 | If $f(x) : A \to B$ and $g(x) : A \to B$ then Dom $[f(x) + g(x)]$ is | A. Dom f(x) ∩ Dom g (x) B. Dom f(x) ∪ Dom g(x) C. [Domf(x)] ² - [Dom g(x)] ² D. [Dom g(x)] ² -[Domf(x)] ² | |-----|--|---| | 154 | The Domain of $f(x) = \log x$ is | A. [0,∞]
B. (0, ∞)
C. [0,∞[
D. [∞,∞] | | 155 | A function F(x) is called even if | A. $F(x) = F(-x)$
B. $F(x) = F(-x)$
C. $F(x) = -F(x)$
D. $2F(x) = 0$ | | 156 | The range of inequality x + 2 > 4 is | A. (-1,2)
B. (-2,2)
C. (1,∞)
D. None | | 157 | Graph of the equation $X^2 + y^2 = 4$ is | A. a circle B. an ellipse C. a parabola D. A square | | 158 | Domain of Y = csc x is | A. R - nπ, n ε I
B. R
C. R -nπ/2,nεI
D. All negative Integers | | 159 | The area of circle of unit radius= | A. 0
B. 1
C. 4
D. π | | 160 | F(x) = xx decreases in the interval | A. (0,e)
B. (0.1)
C. (-∞.0)
D. None | | 161 | In the function $v = 4/3 \pi r^3$, V is a function of | A. 3/4
B. r
C. ν
D. π | | 162 | The parametric equation of a curve are $x = t^2$, $y = t^2$ then | A. dy/dx =3t/2 B. dy/dx =t ⁵ C. dy/dx =5t ⁴ D. None | | 163 | If $x^2 + y^2 = 4$, Then dy/dx = | A. 2x +2y
B. 4 -x ²
Cx/y
D. y/x | | 164 | d/dx a ^x is | A. xa ^{x-1} B. a ^x C. x in a D. a ^x in a | | 165 | d/dx (\sqrt{x}) = | A. 2√x
B. 1/√x
C. 1/2√x
D. None of these | | 166 | $d/dx (3y^4) =$ | A. 12y ³ dy/dx B. 8y ³ C. 8y ³ dy/dx D. 12y ³ | | 167 | If $y = (ax)^m + b^m$, then dy/dx equals | A. m (ax) ^m x ^{m- 1} B. ma ^m x ^{m- 1} C. m a ^m x ^{m- 1} D. m a ^m x ^{m- 1} | | 168 | $d/dx \left[\cos x^2\right] = \underline{\hspace{1cm}}$ | A2x cos x ² B2x ² sin x ² C. x ² sin x D2x ² sin x ² | | 169 | Second derivative of $y = x^9 + 10x^2 + 2x - 1$ at $x = 0$ is | A. 10
B. 20
C. 12
D. 1 | |-----|--|---| | 170 | Derivative of strictly increasing function is always | A. Zero B. Positive C. Negative D. Both A and B | | 171 | Any point where f is neither increasing nor decreasing and $f(x) = 0$ at that point is called a | A. Minimum B. Maximum C. Stationary point D. Constant | | 172 | If y = sin(ax + b) then fourth derivative of y with respect to x= | A. a ⁴ cos (ax + b) B. a ⁴ sin (ax + b) Ca ⁴ sin(ax +b) D. a4 tan (ax + b) | | 173 | ʃ1/ax +b dx = | A. 1/a log ax + b +c B. Log ax + b +c C. 1/b log ax +b +c D. 1/x log ax + b +c | | 174 | $d/dx \int x^1 dx = \underline{\hspace{1cm}}.$ | A. 1/4 x ⁴ B. X ³ C. 3x ³ D. x ⁴ /4 | | 175 | If $f_1(x)$ and $f_2(x)$ are any two anti derivatives of a function $F(x)$ then the value of $f_1(x) = f_2(x)$ | A. A variable B. A constant C. Undefined D. Infinity | | 176 | sec (ax + b) tan(ax + b) dx= | A. sec(ax + b)/a B. sec ² (ax + b)/2 C. sec(ax + b)/x D. 1/2 | | 177 | $\int \cot (ax + b) dx =$ | A. 1/a log sin (ax + b) +c B. 1/a log cos ax + b) C. 1/b sin (ax + b) D. 1/a log sin (bx + a) | | 178 | The general solution of the differential equation $dy/dx = log x$ is | A. Y = -x log x- x+c B. Y = x log x + x ² C. Y = x log x -x +c D. Y = 2x log x + 2x +c | | 179 | The point (-5,3) is the center of a circle and P(7,-2) lies on the circle the radius of the circle is | A. 2
B. 13
C. 7
D. 8 | | 180 | The mid point of the line joining (=1,-3) to(3,-5) is | A. (1, 1)
B. (1,-1)
C. (2, -8)
D. (1, -4) | | 181 | The gradient of the line joining (1,4) and (-2,5) is | A. 3/8
B2 2/3
C1/3
D. 2 | | 182 | The line joining (1,3) to (a,b) has unit gradient then | A. a-b =-2
B. a+b = 0
C. A-b =5
D. 2a + 3b =1 | | 183 | The equation of the line with gradient 1 passing through the point (h,k) is | A. Y = x+ k-h
B. Y = k/hx +1
C. Y = x + h -l
D. Ky = hx =1 | | 184 | The curves $y = x^2$, $y = x$ interest at | A. (0,0) ,(1,1)
B. (2,4)
C. (0,),(2,4)
D. (0,3),(-1,1) | | 185 | Which of the following is the equation of a line with slope 0 and passing through the point $(4,3)$ | A. X = 4
B. X = -4
C. Y = 3
D. Y = -6 | | 186 | If the diagonal of a square has coordinates (1.2) and(5.6) the length of a side is | A. 3
B. 4 | | | n ano anagoniano, a oquano mao oconamianos (1,2) amajo,o, ano nongan on a ondo no | C. 1
D. 5 | |-----|---|--| | 187 | If $k_1 : k_2 = 1:1$ then the point P dividing the line is | A. Mid point B. Extreme left point C. Extreme Right point D. Plies out side k ₁ and k ₂ | | 188 | The center of a circle of radius 10 is on the origin which of the following points lies with in the circle | A. (10,0)
B. (8,8)
C. (8,4)
D. (0,10) | | 189 | The angle a (0° < a< 180°) measured counterclockwise from positive x-axis to a non-horizontal straight line / is called the | A. Rotation B. Inclination C. Radian D. None | | 190 | If a line passes through origin then the equation of the line is | A. y = m/x B. y = mx C. x = my D. None | | 191 | If $x < y$, $2x = A$ and $2y = B$ then | A. A =B B. A &It B C. A&It X D. B &It y | | 192 | If ab > 0 and a < 0, which of the following is negative? | A. b
Bb
Ca
D. (a - b) ² | | 193 | If 4 - x > 5, then | A. x > 1 B. x > -1 C. x < 1 D. x < -1 | | 194 | Which is not a half plane | A. ax + by < c B. ax + by > c C. Both A and B D. None | | 195 | A point of a solution region where two of its boundary lines intersect is called | A. Boundary B. Inequality C. Half plane D. Vertex | | 196 | Which is in the solution set of 4x - 3y <2 | A. (3,0)
B. (4,1)
C. (1,3)
D. None | | 197 | For which of the following ordered pairs (s,t) is s + t> and s- t < -3? | A. (3,2)
B. (2,3)
C. (1,8)
D. (0,3) | | 198 | If $-1 < x < 0$, which of the following statement must be true? | A. x < x ² < x ² B. x < x ³ < x ² C. x ² < x ² < x ³ < x
x ^{2 < x
 b. x² < x < x < x
 x
 x
 x<</br></br></br></br></br></br></br></br></br></br></br></br></br>} | | 199 | If p and r are integers $P = 0$, and $p \neq -r$, which of the following must be true? | A. p < r
B. p > r
C. p + r < 0 | | 200 | The total cost of 2 apples and 3 oranges is \$1.70,which of the following is true | D. p - r < -0 A. The cost of one apple B. The cost of one orange C. Both have equal cost per item D. Cost of each single item can not be determined | | 201 | x is a member of the set {-1,0,3,5} y is a member of the set {-2,1,2,4} which is possible? | A. x- y =-6
B. x -y &It -6
C. x -y > 6
D. None | | 202 | r + 3 > 5 then which is true | A. r + 2 > 4
B. r + 2 < 4
C. r + 2 + 4
D. None | | 203 | Ab > 0 and a > 0 then | A. a > b B. a < b C. a = b D. None | |-----|---|--| | 204 | 8 > t then | A. (s -t) ² >(t -8) ² B. (s -t) ² <(t -8) ² C. (s -t) ² =(t -8) ² D. None | | 205 | If a cone is cut by a plane perpendicular to the axis of the cone then the section is a | A. Parabola B. Circle C. Hyperbola D. Ellipse | | 206 | The equation of the circle with center origin and radius $2\sqrt{2}$ is | A. x ² + y ² = 2√2 B. x ² + y ² = 8 C. x ² - y ² - y ² = 2√2 D. x ² - y ² = 8 | | 207 | The radius of the circle $(x-1)^2 + (y+3)^2 = 64$ is | A. 8
B. 2√2
C. 4
D. 64 | | 208 | The circle $(x-2)^2 + (y+3)^2 = 4$ is not concentric with the circle | A. (x-2) ² + (y + 3)2 =9 B. (x+2) ² + (y - 3)2 + (y - 3)2 + (y + | | 209 | The equation of the normal to the circle $x^2 + 2^2 = 25$ at (4,3) is | A. 3x -4y = 0
B. 3x -4y = 5
C. 4x + 3y = 5
D. 4x - 3y = 25 | | 210 | The perpendicular bisector of any chord of a circle | A. Passes through the center of the circle B. Does not pass through the center of the circle C. May or may not pass through the center of the circle D. None of these | | 211 | The conic is a parabola if | A. e <1 B. e > 1 C. e = 1 D. e = 0 | | 212 | The axis of the parabola $y^2 = 4ax$ is | A. x = 0
B. Y = 0
C. X = y
D. X = -y | | 213 | The end points of the major axis of the ellipse are called its | A. foci B. Vertices C. Co-vertices D. eccentricity | | 214 | The vertices of the ellipse $x^2 + 4y^2 = 16$ are | A. (±,4,0)
B. (0,±,4)
C. (± 2,0)
D. (0,± 2) | | 215 | The line through the center and perpendicular to the transverse axis is called the | A. Major axis B. Minor axis C. Focal axis D. Conjugate axis | | 216 | The two different parts of the hyperbola are called is | A. Vertices B. Directrices C. Nappes D. Branches | | 217 | Unit vector in the positive direction of x-axis is | A. î
B. ĵ
C. k
D. All | | | | | | 218 | The magnitude of a vector can never be | A. Zero B. Negative C. Positive D. Absolute | |-----|---|--| | 219 | If i,m,n are the direction cosines of a vector \overline{OP} then | A. I ² + m ² + n ² =0 B. I ² - m ² + n ² + n ² + C. I ² + m ² + d. I
Sup>2 + m ² + n ² + n ² - n ² - m ² - n ² - | | 220 | The direction cosines of y-axis are | A. 1,0,0
B. 0,1,0
C. 0,0,1
D. 1,1,1 | | 221 | If the angle between two vectors with magnitude 8 and 2 is 60° then their scalar product is | A. 12
B. 8
C. 16
D. 1 | | 222 | If the vector 2i+4j-2k and 2i +6j+xk are perpendicular then x-7 | A. 4
B. 8
C. 14
D. 7 | | | | |