

Physics ICS Part 1 Chapter 7 Online Test

Sr	Questions	Answers Choice
1	The to and fro motion of a body is called	A. Linear motion B. Rotational motion C. Vibratory motion D. None of these
2	The motion of a simple pendulum is the example of	A. Vibratory motionB. Rotatory motionC. Periodic motionD. Both a and c
3	The produce oscillation, body is pulled away from its	A. Mean position B. Extreme position C. Both a and b D. None of these
4	The acceleration produced by elastic restoring force is	A. Perpendicular to forceB. Opposite to forceC. In same direction as forceD. Zero
5	In S.H.M, the acceleration of the body is directly proportional to	A. Weight of body B. Applied force C. Amplitude D. Displacement
6	When a body is vibrating its displacement from mean position	A. Remains constant B. Changes with time C. Become(-)ve D. None of these
7	One complete round trip of a body is called	A. Displacement B. Time period C. Vibration D. Frequency
8	Frequency 'f' and time period 'T' are related as	
9	Angular frequency is the characteristic of	A. Linear motion B. Vibratory motion C. Circular motion D. All of these
10	Question Image	
11	A swing is good example of	A. Resonance B. Vibration C. Time period D. Oscillation
12	Damping is the process in which energy	A. IncreasesB. Remains constantC. DissipatesD. None of these
13	Time period of simple pendulum depends upon	A. Mass of pendulum B. Weight of pendulum C. Length of pendulum D. Shape of pendulum
14	Second pendulum has a time period	A. 1 sec B. 3 sec C. 2 sec D. 4 sec
15	The frequency of 2nd pendulum is	A. 0.5 Hz B. 1 Hz C. 1.5 Hz D. 2 Hz
16	The amplitude of a vibrating body at resonance in vacuum is	A. Minimum B. Maximum C. Zero D. Infinite
		• • •

17	P.E. of a spring is stored in	A. Spring B. mass C. Both of them D. None of these
18	A quantity which indicates the state and direction of a vibrating body is known as	A. Time period B. Amplitude C. Phase D. Frequency
19	In simple harmonic motion the velocity of a particle is maximum at.	A. Extreme positionB. Mean positionC. In between extreme and mean positionD. None of them
20	the acceleration of a body having SHM, depends upon its.	A. Time period B. Amplitude C. Frequency D. Displacement from mean position
21	The mathematical expression for the restoring force is.	A. F = kx B. F = ma C. F = dp/dt D. F = -kx
22	One complete round trip of a vibrating body is called.	A. Frequency B. Time period C. Vibration D. Amplitude
23	The product of time period and frequency is.	A. Zero B. 1 C. 2 D. 3
24	If the time period of simple pendulum is 2 seconds its frequency will be.	A. 1 Hz B. 0.5 Hz C. 1.5 Hz D. 2 Hz
25	The velocity of a particle having SHM is 'v' at means position. If its amplitude is doubled them velocity at mean position will be	A. v/2 B. v C. <div>2v</div> D. 4 v
26	the distance covered during one vibration of an oscillating body in terms of amplitude 'A' is	A. A/2 B. A C. 2A D. 4A
27	The wave form of SHM is.	A. Sine wave B. Cosine wave C. Tangent wave D. Square wave
28	The time period of an oscillating mass spring system is 10 second. If mass attached to spring id doubled then time period becomes.	A. 10 sec B. 20 sec C. 5 sec D. None of these
29	If the tension a stretched string is made four times then the velocity of wave.	A. Remains same B. Is halved C. Becomes twice D. Becomes 4 times
30	A spring has a spring constant k. If it is cut in two equal parts, the spring constant of each part will be	A. K B. 2 K C. K/2 D. 4K
31	the length of simple pendulum of time period 1 second is	A. 2 m B. 1 m C. 0.5 D. 0.25 m
32	If amplitude of a simple pendulum is increased by 4 times the time period will be.	A. Four times B. Half C. Same D. Two times
33	At which place the motion of a simple pendulum will be slowest.	A. Karachi B. K-2 C. Murree D. Lahore
34	Time period of simple pendulum only depends on	A. Mass B. Amplitude C. Density

		D. Length
35	A spring of spring constant 10 N/m after loading that amplitude is 2m. Then the maximum P.E. is	A. 10 J B. 20 J C. 30 J D. 40 J
36	The frequency of waves produced in microwave oven is	A. 1435 Hz B. 2450 MHz C. 1860 MHz D. 2850 Hz
37	The wavelength of wave produced by microwave oven is.	A. 12 cm B. 12 m C. 18 m D. 18 cm
38	Turning of radio is example of.	A. Mechanical resonance B. Electrical resonance C. Physical resonance D. Biological resonance
39	Oscillation of shock absorber of a car is practical example of.	A. simple harmonic motion B. Forced oscillation C. Damped oscillation D. Undamped oscillation
40	A phenomenon by which energy is dissipated from the oscillating system is called.	A. Forced oscillation B. Free oscillation C. Damping D. Simple harmonic motion