

## 11th Class ICS Mathematics Chapter 7 Test Online

| Sr | Questions                                                                                                                           | Answers Choice                                                                                            |
|----|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1  | n! stands for:                                                                                                                      | A. product of first natural numbers B. sum of n natural numbers C. product of n integers D. none of these |
| 2  | For a positive integer n:                                                                                                           | A. $(n+1)! = (n+1)n!$<br>B. $(n+1)! = (n+1)(n-1)!$<br>C. $n! = n(n+1)!$<br>D. none of these               |
| 3  | The factorial of positive integer is:                                                                                               | A. rational no. B. positive integer C. real no. D. none                                                   |
| 4  | No. of selection of n different things out of n is:                                                                                 | A. 1<br>B. n<br>C. n!<br>D. none                                                                          |
| 5  | In how many ways two places can be filled by n objects:                                                                             | A. n(n-1) B. 2! C. n(n+1) D. None                                                                         |
| 6  | No. of arrangements of the letters of the word plane taking all letters at a time:                                                  | A. 5<br>B. 1<br>D. none                                                                                   |
| 7  | No. of signals made by 5 flags of different colors using 3 flags at a time is:                                                      | A. 60<br>B. 15<br>C. 10<br>D. None                                                                        |
| 8  | No. of signals made by 4 flags of different colors using 2 flags at a time:                                                         | A. 6<br>B. 12<br>C. 60<br>D. none                                                                         |
| 9  | Number of digits multiple of 5 made from the digits 2, 3, 5, 7, 9 is:                                                               | A. 5<br>B. 24<br>C. 20<br>D. none                                                                         |
| 10 | How many different number can be formed by taking 4 out of the six digits 1, 2, 3, 4, 5, 6:                                         | A. 360<br>B. 120<br>C. 366<br>D. none of these                                                            |
| 11 | Numbers are formed by using all the digits 1, 2, 3, 4, 5, 6 on digit being repeated, then the numbers which are divisible by 5 are: | A. 110<br>B. 120<br>C. 122<br>D. 124                                                                      |
| 12 | If ${}^{n}P_{2} = 30$ then $n = :$                                                                                                  | A. 5<br>B. 6<br>C. 2<br>D. 3                                                                              |
| 13 | No. of arrangements can be made of 4 letters a, b, c, d taken 2 at a time?                                                          | A. 8<br>B. 12<br>C. 10<br>D. 14                                                                           |
|    |                                                                                                                                     | A. 21160<br>B. 20160                                                                                      |
| 14 | No. of arrangements of the letters of the word PAKISTAN can be made, taken all together?                                            | C. 20170<br>D. 20016                                                                                      |
| 15 | No. of arrangements of the letters of the word PAKPATTAN can be made, taken all together ?                                          | A. 15130<br>B. 15120<br>C. 1512<br>D. none of these                                                       |
|    |                                                                                                                                     |                                                                                                           |

---

| 16 | No. of triangles can be formed by joining the vertices of the polygon having 12 sides?           | A. 202<br>B. 220<br>C. 110<br>D. none of these                   |
|----|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 17 | No. of triangles can be formed by joining the vertices of the polygon having 5 sides?            | A. 10<br>B. 15<br>C. 20<br>D. none of these                      |
| 18 | The number of diagonals of a polygon with n sides is:                                            | D. none of these                                                 |
| 19 | No. of diagonals can be formed by joining the vertices of the polygon having 5 sides?            | A. 5<br>B. 15<br>C. 51<br>D. 10                                  |
| 20 | No. of diagonals can be formed by joining the vertices of the polygon having 12 sides?           | A. 70<br>B. 54<br>C. 70<br>D. 73                                 |
| 21 | A key ring is an example of:                                                                     | A. permutation B. circulation permutation C. combination D. none |
| 22 | Number of ways of arranging 5 keys in a circular ring is:                                        | A. 12<br>B. 24<br>C. 6<br>D. 5                                   |
| 23 | No. of necklaces can be made from 7 beads of different colors ?                                  | A. 360<br>B. 120<br>C. 60<br>D. 70                               |
| 24 | The number of ways in which fiver persons can sit at a round table is:                           | A. 4!<br>B. 5!<br>D. none of these                               |
| 25 | The value of <sup>5</sup> C <sub>2</sub> is:                                                     | A. 1<br>B. 10<br>C. 20<br>D. 30                                  |
| 26 | $^{n}C_{4}$ = $^{n}C_{8}$ then n = :                                                             | A. 4<br>B. 12<br>C. 8<br>D. 6                                    |
| 27 | If S is a sample space and event E is S then P(E) is:                                            | A. 0<br>B. 1<br>C. >1<br>D. none                                 |
|    |                                                                                                  | A. 0                                                             |
| 28 | Question Image                                                                                   | B1<br>C. >1                                                      |
|    |                                                                                                  | D. none                                                          |
| 29 | Probability of a certain event is:                                                               | A. 0<br>B. 1<br>C. >1<br>D. ∞                                    |
| 30 | The probability that a number selected from the numbers 1, 2, 3, 4, 5,, 16 is a prime number is: |                                                                  |
| 31 | A die is rolled. The probability that the dots on the top are greater than 4 is:                 | A. 5, 6<br>D. 1                                                  |
| 32 | Probability of an impossible event is:                                                           | A. 0<br>B. 1<br>C1<br>D. ∞                                       |
| 33 | A dice is thrown. The probability to get an odd number is;                                       | A. 1<br>D. none of these                                         |
| 34 | A dice is thrown. The probability to get an even number is:                                      | A. 1<br>D. none of these                                         |
| 35 | Question Image                                                                                   | A. 4<br>B. 6<br>C. 8<br>D. 10                                    |
|    | Tigligate numbered 1 to 20 are mixed up and then a tigligatic drawn at random. What is the       |                                                                  |

| 36 | probability that the ticket drawn bears a number which is a multiple of 3?                          | D. none of these |
|----|-----------------------------------------------------------------------------------------------------|------------------|
| 37 | In a simultaneous throw of two dice, The probability of getting a total of 7 is:                    |                  |
| 38 | In a simultaneous throw of two dice, The probability of getting sum 3 or 11 is:                     | D. none          |
| 39 | A dice is rolled, the probability of getting a number which is even or greater than 4 is:           | D. none of these |
| 40 | One card is drawn at random from a pack of 52 cards. The probability that the card drawn a king is: | D. none of these |
| 41 | Question Image                                                                                      |                  |