

11th Class ICS Mathematics Chapter 4 Test Online

Sr	Questions	Answers Choice
1	No. of ways of solving a quadratic equation:	A. 1 B. 3 C. 2 D. 4
2	The other name of quadratic equation is:	A. linear equation B. 1st degree equation C. 2nd degree equation D. none
3	Solution set of the equation x^2 - $3x + 2 = 0$ is	A. {-1, 2} B. {1, -2} C. {-1, -2} D. {1, 2}
4	Question Image	A. c = 0 B. b = 0, c = 0
5	Which one is radical equation:	A. ax ² + bx + c B. ax + b = 0 D. 2 ^x = 16
6	Which one is exponential equation:	A. ax ² + bx + c = 0 B. ax + b = 0 D. 2 ^x = 16
7	If $4^{x} = 2$, then x equals:	A. 2 B. 1
8	If $P(x)$ is a polynomial of degree m and $Q(x)$ is a polynomial of degree n, the product $P(x)$. $Q(x)$ will be a polynomial of degree:	A. m. n B. m - n C. m + n D. m × n
9	If $P(x)$ is a polynomial of degree m and $Q(x)$ is a polynomial of degree n, the quotient $P(x) + Q(x)$ will produce a polynomial of degree:	A. m. n, plus a quotient B. m - n, plus a remainder C. m ÷ n, plus a factor D. m + n, plus a remainder
10	One of the roots of the equation $3x^2 + 2x + k = 0$ is the reciprocal of the other, then $k = \dots$:	A. 3 B. 2 C. 1 D. 4
11	Question Image	A. quadratic equation B. reciprocal equation C. exponential equation D. none of these
12	3^{2x} - 3^{x} - $6 = 0$ is:	A. reciprocal equation B. exponentialequation C. radicalequation D. none of these
13	If α , β are complex cube roots of unity, then 1 + α^n + β^n = where n is a positive integer divisible by 3:	A. 1 B. 3 C. 2 D. 4
14	If α , β are the roots of x^2 + kx + 12=0 such that α - β = 1 then K = :	A. 0 B. ±5 C. ±7 D. ±15
15	The roots of the equation:	A. complex B. irrational C. rational D. none of these
16	Complex roots of real quadratic equation always occur in:	A. conjugate pair B. ordered pair C. reciprocal pair D. none of these
		• •

17	How many complex cube roots of unity are there:	A. 2 B. 0 C. 1 D. 3
18	Sum of all three cube roots of unity is:	A. 1 B1 C. 0 D. 3
19	Sum of all four fourth roots of unity is:	A. 1 B. 0 C1 D. 3
20	If a polynomial $P(x) = x^2 + 4x^2 - 2x + 5$ is divided by $x - 1$, then the reminder is:	A. 8 B2 C. 4 D. 5
21	Synthetic division is a process of:	A. division B. subtraction C. addition D. multiplication
22	The ration of the sum and product of roots of $7x^2$ - $12x + 18 = 0$ is:	A. 7:12 B. 2:3 C. 3:2 D. 7:18
23	If the sum of the roots of the equation $kx^2 - 2x + 2k = 0$ is equal to their product, then the value of k is:	A. 1 B. 2 C. 3 D. 4
24	For what value of k, the sum of the roots of the equation $x^2 + kx + 4 = 0$ is equal to the product of its roots:	A. ±1 B. 4 C. ±4 D4
25	If the roots of x^2 - bx + c = 0 are two consecutive integers, then: b^2 - 4ac =	A. 0 B. 1 C1 D. 2
		A 4
26	If the sum of the roots of ax^2 - $(a + 1) x + (2a + 1) = 0$ is 2, then the product of the roots is:	A. 1 B. 2 C. 3 D. 4
26	If the sum of the roots of ax^2 - $(a + 1) x + (2a + 1) = 0$ is 2, then the product of the roots is: Question Image	B. 2 C. 3
		B. 2 C. 3 D. 4 A. linear equation B. Quadraticequation C. cubicequation
27	Question Image	B. 2 C. 3 D. 4 A. linear equation B. Quadraticequation C. cubicequation D. radicalequation A. real and equal B. complex C. rational
27	Question Image If the Discriminant of a quadratic equation is a perfect square, then roots are:	B. 2 C. 3 D. 4 A. linear equation B. Quadraticequation C. cubicequation D. radicalequation A. real and equal B. complex C. rational D. irrational A. 1 B. 8 C. 2
28	Question Image If the Discriminant of a quadratic equation is a perfect square, then roots are: For what value of k, the roots of the equation $x^2 + \sqrt{k} x + 2 = 0$ are equal:	B. 2 C. 3 D. 4 A. linear equation B. Quadraticequation C. cubicequation D. radicalequation A. real and equal B. complex C. rational D. irrational A. 1 B. 8 C. 2 D. 4 A. rational B. irrational C. equal D. complex A. rational C. equal C. equal C. equal C. equal
27 28 29 30	Question Image If the Discriminant of a quadratic equation is a perfect square, then roots are: For what value of k, the roots of the equation $x^2 + \sqrt{k} x + 2 = 0$ are equal: In $ax^2 + bx + c = 0$, if $b^2 - 4ac > 0$ and perfect square the roots are:	B. 2 C. 3 D. 4 A. linear equation B. Quadraticequation C. cubicequation D. radicalequation A. real and equal B. complex C. rational D. irrational A. 1 B. 8 C. 2 D. 4 A. rational B. irrational C. equal D. complex A. rational B. irrational C. equal D. complex A. rational B. irrational B. irrational
27 28 29 30	Question Image If the Discriminant of a quadratic equation is a perfect square, then roots are: For what value of k, the roots of the equation $x^2 + \sqrt{k} x + 2 = 0$ are equal: In $ax^2 + bx + c = 0$, if $b^2 - 4ac > 0$ and perfect square the roots are: The roots of the equation $25x^2 - 30x + 9 = 0$ are;	B. 2 C. 3 D. 4 A. linear equation B. Quadraticequation C. cubicequation D. radicalequation A. real and equal B. complex C. rational D. irrational A. 1 B. 8 C. 2 D. 4 A. rational B. irrational C. equal D. complex A. rational B. irrational C. equal D. complex A. rational B. irrational C. equal D. complex A. linear B. quadratic C. homogeneous

A. 2

		=: =: =:===
35	If one root of $2x^2 + ax + 6 = 0$ is 2 then the value of a is:	A. 7 B7
36	Question Image	D. i
37	Question Image	A. 1 B. 0 C. 2 D. 3
38	Question Image	A. 4 B. 16 C. 8 D. 64
39	Question Image	D. none of these
40	Four fourth roots of 625 are:	A. ±5,±5i B. ±5,±25i C. ±25,±25i D. none of these
41	Sum of roots of $ax^2 + bx + c = 0$ is equal to product of roots only if:	A. a+c=0 B. b+c=0 C. a+b=0 D. a+b+c=0