

General Math 10th Class English Medium Online Test

Sr	Questions	Answers Choice	
1	An expression which involves numbers and letters together with operational signs is called:	A. Polynomial B. Algebraic expression C. rational expression D. Irrational expression	
2	The lowest term of 8x2y2/12xy5 is:	A. 2x2/3y3 B. 3x3/2y2 C. 3x2/2y3 D. 4c2/9y3	
3	Type of algebraic expressions are:	A. Polynomial , Rationa expression B. Rational expression, irrational expression C. irratioanal expressional , Polynomial D. Polynomial , Rational expression , Irational expression	
4	An expression which can be written in the form of $P(x)/Q(x, Q(x)\neq 0)$, Where $P(x)$ and $Q(x)$ are polynomials in "x" is called a:	A. irraational expression B. rational expression C. proper rational expression; D. improper rational expression	
5	Which of the following is a proper rational expression?	A. $2x3 + 3x2 + 3/x2 + x + 3$ B. $3x2 + 4x + 5/2x'4 + 1$ C. $x3 + 8/x + 1$ D. $2\sqrt{x}+3/2\sqrt{x}-3$	
6	Which of the following expression is not a rational expression?	A. $3\sqrt{x} + \frac{1}{3}\sqrt{x} + 1$ B. $x^3 + \frac{1}{x} + 1$ C. $x + \frac{1}{3}x^3 + x^2 + 3$ D. $2x^2/3y^3$	
7	x + 5/x2 - 6x - x/x - 6 =?	A. $5 - x - \frac{x^2}{x^2} - 6x$ B. $5 + x - \frac{x^2}{x^2} - 6x$ C. $5 + x - \frac{x^2}{x^2} + 6x$ D. $x^2 - \frac{6x}{5} + x - \frac{x^2}{x^2}$	
8	if P(x) = 4x3 +3x2 + 5x + 1, then P(1) as:	A. 13 B. 15 C. 17 D. 19	
9	2(a2 + b2) = ?	A. $(a^2 + b^2) - 4ab$ B. $(a + b)^2 + (a - b)^2$ C. $(a + b + c)^2$ D. $(a + b)^2 - (a - b)^2$	
10	if a + b =8 and a-b =3, then ab = ?	A40 B. 24 C. 18 D. 8	
11	if <i>x</i> 2 = a, then:	A. $x = a$ B. $x = \pm a$ C. $x = \sqrt{a}$ D. $x = \pm \sqrt{a}$	
12	The symbol " i.e " stands for:	A. therefore B. because C. that is D. correspondence	
13	An irrational number that contains a radical sign is called:	A. Polynomial B. surd C. equality D. inequality	
14	Which of the following is a pure surd?	A. 4√3 B. 5√7 C. 1/7√3 D. 4	
15	Conjugate binomial surd of a + b \sqrt{x} is	A. $a + bx$ B. $a - b\sqrt{x}$ C. $\sqrt{a} + \sqrt{bx}$	

16	The general form of a cubic polynomial is:	A. ax2 + bx +c B. ax + b C. ax4 +bx3+cx2+dx+e D. ax3 + bx2 + cx + d
17	The process of writing an expression an a product of two or more factors is called:	A. polynomial B. factorization C. factors D. quadratic polynomial
18	A quadratic polynomial is a of degree:	A. 0 B. 1 C. 2 D. 3
19	Factors of x2 -x -x 156 are:	A. (x - 12)(x - 13) B. (x - 12)(x + 13) C. (x + 12)(x + 13) D. (x - 13)(x + 12)
20	Factorization of x3 -6x2 + 12x -x is:	A. (x +2)3 B. (x-2)3 C. x3 +23 D. x3- 23
21	If R is the remainder after dividing the polynomial $P(x)$ by x -a, then:	A. $P(x) = R$ B. $P(R) = x$ C. $P(a) = R$ D. $P(R) = a$
22	If x - a is the factor of $P(x)$, them $P(a)$ will be:	A. 0 B. 1 Ca D. a
23	(-1)odd = ? or (-1) a-1 =?	A. 1 B1 C. (-1) n+1 D. (-1)-(n-a)
24	If a $x^{25} + 1$ is divided by $x + 1$, then the remainder is:	A. 0 B. 1 C. 2 D. 3
25	If two or more algebraic expressions are given the highest degree which divides each of them without remainder is called:	A. L.C.M B. H.C.F C. square root D. factorization
26	H.F.C of 8xy2z3 and 12x2y2z2 is:	A. 4x2y2z2 B. 4xy2z2 C. 8xy2z D. 8xyz
27	The abbreviation of the words "least common multiple" is:	A. H.C.F B. L.E.M C. L.C.M D. L.M.C
28	A polynomial $D(x)$ is called a divisor of a polynomial $p(x)$,if:	A. $P(x) = D(x)/Q(x)$ B. $D(x) = P(x),Q(x)$ C. $Q(x) = p(x),D(x)$ D. $P(x) = D(x). Q(x)$
29	What should be added in a2 + 4c to make it a complete square?	A. 2a B. 4c2 C. 4c D. 2c2
30	The product of two factors is equal to:	A. H.C.F B. H.C.F x L.C.M C. L.C.M D. H.C.F/L.C.M
31	An equation that can be written in the form $ax + b = 0$, $a \neq 0$ where a and ab are constants and x is variable is called:	A. linear equation B. liner inequality C. cubic equation D. quadratic equation
32	Any term of an equation may be taken to the other side with its sign changed without affection the equation is called:	A. factorization B. surd C. transposition D. transformation
		A. greater than B less than

D. a - bx

33	The symbol '>' stand for:	C. less then or equal to D. greater than or equal to
34	Any value of the variable which makes the equation a true statement is called the:	A. equation B. inequality C. variable D. solution
35	The solution set of absolute equation $ x - 3 = 5$ is:	A. (2,8) B. (-2,8) C. (-2,-8) D. (2,-8)
36	Root which are not the solution of the original equation but they are obtained in the solution are called:	A. Real roots B. extraneous roots C. constants D. variable solvents
37	Two liner algebraic expressions joined by an inequality symbol such as >,<, >,< is called:	A. liner equation B. liner inequality C. absolute value equation D. order relation
38	for any there numbers x,y and z if $x > y$ and $y > z$ then:	A. trichotomy property B. transitive property C. additive property D. multiplicative property
39	The solution set of x - 7< 5 - 2x is:	A. x > 4 B. x = 4 C. x ⁢ 4 D. x ⁢ 4
40	If a x b = 0 then a = 0 or b = 0 (both a and b equal to zero) is called:	A. solution of equation B. law of indices C. law of null factor D. law of inverse
41	Factor of x3 - 4x - 77 = 0 are:	A. (11, -7) B. (11, 11) C. (11, 7) D. (-7, 7)
42	The quadratic form of x - 5/2x= x - 4/3 is:	A. 2x2 -11x + 15 B. 2x2 - 15x +11 C. 2x2 -22x + 15 D. 2x2 + 11x - 15
43	A father's age 4 times of his son's age. if the age of son is 20 year's then the age of father is:	A. 60 B. 80 C. 100 D. 40
44	The idea of matrices was introduced by:	A. jobs burgi B. Robert C. Pythagoras D. Arthur Cayley
45	A square or a rectangular array of numbers written within square brackets or parentheses in a definite order is called a:	A. determinate B. diagonal C. matrix D. row
46	If two matrices have same order and their corresponding elements are equal then they are called:	A. equal matrices B. unequal matrices C. scalar matrices D. rectangular matrices
47	A matrix consisting of only one row is called a:	A. row matrix B. column matrix C. scalar matrix D. rectangular matrix
48	A square matrix in which all the element except at least one element in the diagonal are zero is called a:	A. rectangular matrix B. zero matrix C. square matrix D. diagonal matrix
49	Two matrices are conformable for addition if they are of the:	A. same order B. different order C. order 2 x 2 D. order 3 x 3
50	(AB)t = ?	A. At + Bt B. AtBt C. BtAt D. AB
		A 11 11

51	IF At = -A then matrix A is called a:	A. symmetric matrix B. skew - symmetric matrix C. transpose of matrix D. identity matrix
52	Which matrix is said to be additive identity of any matrix:	A. scalar matrix B. diagonal matrix C. zero matrix D. unit matrix
53	If a order of matrix A is $(m x p)$ and order of matrix B is $(p x n)$. Then order of matrix AB is:	A. m x p B. p x n C. m x n D. n x n
54	Which matrix has no multiplicative inverse?	A. unit matrix B. singular matrix C. non - singular matrix D. diagonal matrix
55	The union of two rays with the common end point is called:	A. arm B. vertex C. angle D. midpoint
56	Supplementary angle (straight) is equal to:	A. 90° B. 30° C. 180° D. 120°
57	Two angel with the common vertex and a common arm between them are called:	A. supplementary angle B. reflex angles C. straight angles D. adjacent angles
58	An angle containing more than 180° and less than 360° angle is called:	A. right angle B. acute angel C. obtuse angle D. reflex angle
59	If the sum of two angles is 90° then the angles are called:	A. supplement of each other B. complement of each other C. inverse of each other D. reflex of each other
60	How many parallel lines to a given line can be drawn through a point?	A. two B. three C. so many D. one and only one
61	If two angle and a corresponding side included angles of two triangles are same then they , which congruent this postulate is called:	A. S.A.S Postulate B. A.S.A Postulate C. S.S.S Postulate D. R.H.S Postulate
62	A triangle with no equal side is called:	A. isosceles triangle B. obtuse triangle C. scalene triangle D. acute triangle
63	A triangle with two equal sides is called an:	A. isosceles triangle B. obtuse triangle C. scalene triangle D. acute triangle
64	A parallelogram containing right angles is called a:	A. equilateral B. rectangle C. quadrilateral D. square
65	A line segment whose end points lie on the circle is called a:	A. radial segment B. are C. chord D. radius
66	Angle in a semi-circle is of measure :	A. 45° B. 60° C. 90° D. 120°
67	Circles in the same plane with same center and different radii are called:	A. concentric circles B. semi circles C. equal circles D. concyclic circles
68	The opposite angles of a parallelogram are:	A. congruent B. similar C. equal

69	A line segment that bisects and angles of the triangle and has its other end on the side opposite to that angle is called:	A. altitude of the triangle B. incenter of the triangle C. angle bisector if the triangle D. median of the triangle
70	A line segment joining a vertex to the midpoint of the side opposite to the vertex is called:	A. altitude to the triangle B. side bisector of the triangle C. angle bisector if the triangle D. median to the triangle
71	The point of intersection of the perpendicular bisectors of he sides of a triangle meet is called	A. circum-center of the triangleB. incenter of he triangleC. centroid of the triangleD. orthocenter of the triangle
72	The number of angle bisectors of a triangle is:	A. 1 B. 2 C. 3 D. 4
73	The altitudes of a triangle are:	A. concurrent B. collinear C. non-collinear D. non-concurrent
74	All the altitudes are equal of an:	A. rectangle B. scalene triangle C. isosceles triangle D. equilateral triangle
75	The centro id of a triangle divides each one of the medians in the ratio:	A. 1:1 B. 1:2 C. 2:1 D. 2:2
76	Median to the equal sides of an isosceles triangle are:	A. congruent B. equal C. similar D. unequal
77	A parallelogram containing a right angle is called a:	A. quadrilateral B. square C. rectangle D. equilateral
78	An equilateral rectangle is called a:	A. Polygon B. quadrilateral C. parallelogram D. square
79	The midpoint of the diameter of a circle is called:	A. radius B. chord C. center D. tangent
80	If the points of contact of a common tangent to the two circles are on the same side of the line joining their centers then this common tangent is called:	A. external tangent B. internal tangent C. concyclic tangent D. concentric tangent
81	If the centers of two circles lie in either side of the common tangent then it is called:	A. external tangent B. internal tangent C. concyclic tangent D. concentric tangent
82	The point at which the three angle-bisector of a triangle meet is called:	A. circum-cneter of the triangleB. incenter of the triangleC. centroid of the triangleD. orthocenter of the triangle
83	The square of the hypotenuse is equal to the sum of the square of two sides this statement is called:	A. Factor theorem B. Hero's formula C. Ration formula D. Pythagoras theorem
84	The side opposite to a right angle in a right angled triangle is called:	A. base B. altitude C. Hypotenuse D. Perpendicular
85	The area of an equilateral triangle with side 'a' is:	A. 1/2πr2 B. 3a2/2 C. √3a2/2 D. 2πr2
86	Area has dimensions;	A. one B. two

		D. four
87	The volume of a sphere is:	A. πr2h B. 1/3πr2h C. 4/3πr2h D. πr2
88	The area of four walls of a room when length breadth and height of a room are given is:	A. l x b B. 2h(l +b) C. h(l +b) D. 2(l+b)
89	1kl = ?	A. 1 m3 B. 106cm3 C. 109mm3 D. lm3
90	Diagonal of a square with side is:	A. 1/2a B. 2a C. √2a D. 4a
91	Who gave idea of plane:	A. John Napier B. Jobst burgi C. Descartes D. Arthur cayley
92	Point (-2,4) lies in:	A. 1-quardrant B. II-quadrant C. III-quadrant D. IV -quadrant
93	The distance between the point (2,1) and (-4,3) is:	A. 2√10 B. 10√2 C. 2 D. 10
94	The origin has coordinates:	A. (0,1) B. (1,0) C. (1,1) D. (0,0)
95	A point in II-quadrant has its abscissa:	A. positive B. negative C. zero D. one
96	Question Image	
97	Question Image	
98	Question Image	A. 2-By -1 B. 1-By-2 C. 3-By-2 D. 3-by-1
99	Which of the following is a column matrix?	
100	Question Image	A. uv-yx B. vx - uv C. uy - vx D. 0
101	Question Image	A. 72° B. 180° C. 108° D. 90°
102	Hero's formula is:	
103	The distance formula between two points is:	
104	A line segment that bisects an angle of the triangle and has its other end on the side opposite to that angle is called:	A. altitude of the triangle B. incenter of the triangle C. angle bisector of the triangle D. median of the triangle
105	The point at which the three angle-bisectors of a triangle meet is called:	A. circum-center of the triangleB. inceter of the triangleC. centroid of the triangleD. orthocenter of the triangle
106	A line segment joining a vertex to the midpoint of the side opposite to the vertex is called:	A. altitude of the triangle B. side bisector of the triangle C. angle bisector of the triangle D. median of the triangle
		A circum-center of the triangle

107	The point of intersection of the perpendicular bisectors of the sides of a triangle meet, is called:	B. incenter of the triangleC. centroid of the triangleD. orthocenter of the triangle	
108	The number of angle bisectors of a triangle is:	A. 1 B. 2 C. 3 D. 4	
109	The altitude of a triangle are:	A. concurrent B. collinear C. non-collinear D. non-concurrent	
110	All the altitudes are equal of an:	A. rectangle B. scalene triangle C. isosceles triangle D. equilateral triangle	
111	The centroid of a triangle divides each one of the medians in the ratio:	A. 1:1 B. 1:2 C. 2:1 D. 2:2	
112	Medians to the equal sides of an isosceles triangle are:	A. congruent B. equal C. similar D. unequal	
113	A parallelogram containing a right angle is called a:	A. quadrilateral B. square C. rectangle D. equilateral	
114	An equilateral rectangle is called a:	A. polygon B. quadrilateral C. parallelogram D. square	
115	The midpoint of the diameter of a circle is called:	A. radius B. chord C. center D. tangent	
116	If the points of contact of a common tangent to the two circles are on the same side of the line joining their centers, then this common tangent is called:	A. external tangent B. internal tangent C. concyclic tangent D. concentric tangent	
117	If the centers of two circles lie in either side of the common tangent then it is called:	A. external tangent B. internal tangent C. concyclic tangent D. concentric tangent	
118	The square of the hypotenuse is equal to the sum of the square of two sides, this statement is called:	A. Factor theorem B. Hero's formula C. Ratio formula D. pythagoras theorem	
119	The side opposite to a right angle in a right angled triangle is called:	A. base B. altitude C. hypotenuse D. perpendicular	
120	The area of an equilateral triangle with side 'a' is:	A. 1.5 <span new="" roman";<br="" style="color: rgb(34, 34, 34);
font-family: " times="">font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);">πr² B. 3a²/2 C. 3a²/2 D. 2<span font-<br="" new="" roman";="" style="color: rgb(34, 34, 34); font-
family: " times="">size: 24px; text-align: center; background- color: rgb(255, 255, 248);">πr² </img 	
121	The area of four walls of a room when length, breadth and height of a room are given is:	A. l x b B. 2h (l + b) C. h(l + b) D. 2 (l + b)	

122	Area has dimensions:	A. one B. two C. three D. four
123	1kl = ?	A. 1 m ³ B. 10 ⁶ cm ³ C. 10 ⁹ mm ³ D. 1 m ⁴
124	The volume of a sphere is:	A. <span font-<br="" new="" roman";="" style="color: rgb(34, 34, 34); font-
family: " times="">size: 24px; text-align: center; background- color: rgb(255, 255, 248);">πr²h B. 1/3 <span new="" roman";<br="" style="color: rgb(34, 34, 34);
font-family: " times="">font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);">πr²h C. 4/3 <span new="" roman";<br="" style="color: rgb(34, 34, 34);
font-family: " times="">font-family: "Times New Roman"; font-family: "Times New Roman"; font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);">πr²h D. <span font-<br="" new="" roman";="" style="color: rgb(34, 34, 34); font-
family: " times="">size: 24px; text-align: center; background- color: rgb(255, 255, 248);">πr²
125	Diagonal of a square with side is:	A. 1/2 a B. 2a C. 2a ² D. 4a
126	Who gave the idea of plane:	A. John Napier B. Jobst burgi C. Descartes D. Arthur cayley
127	Point (-2,4) lies in:	A. I-quadrant B. II-quadrant C. III-quadrant D. IV-quadrant
128	The distance between the point (2,1) and (-4,3) is:	A. 2 10 B. 102 C. 2 D. 10</img </img
129	The origin has coordinates:	A. (0,1) B. (1,0) C. (1,1) D. (0,0)
130	A point in II-quadrant has its abscissa:	A. positive B. negative C. zero D. onw
131	Point (2,-4) lies in:	A. I-quadrant B. II-quadrant C. III-quadrant D. IV-quadrant
132	The number of perpendicular bisectors of the sides of a triangle is:	A. 0 B. 4 C. 3 D. 2
133	The symbol ">" stand for:	A. greater than B. less than C. less than or equal to D. greater than and equal to
		V 60

134	A father's age 4 times of his son's age. If the age of son is 20 year's, then the age of father is:	
135	The point of intersection of the perpendicular bisector of the sides of a triangle meet is called.	A. Orthoo B. Incent C. Centro

Α.	Orthocenter	of the	triangle
----	-------------	--------	----------

B. Incenter of the triangleC. Centroid of the triangleD. Circum center of the triangle