

Physics FSC Part 2 Chapter 17 Online MCQ's Test

Sr	Questions	Answers Choice
1	The solids are classified as	A. PolymericB. AmorphousC. CrystallineD. All of above
2	An ordinary glass gradually softness into a paste like state before it becomes a very viscous liquid which is possible at	A. 900 ^o C B. 600 ^o C C. 800 ^o C D. 100 ^o C
3	Yield stress is another name of	A. Plasticity B. Proportional limit C. Elastic limit D. Both (b) and (c)
4	The dimension of stress is	A. [MLT ⁻¹] B. [ML ⁻¹ T] C. [ML ⁻¹ T ⁻¹] D. [ML ⁻¹ T ⁻²]
5	The conductors having the conductivity of the order of	
6	The material whose resistivity becomes zero below a certain temperature	A. Conductors B. Semi conductors C. Super conductors D. Insulators
7	Recentaly a complex crystalline structure known as yttrium barium copper oxide (Yba $_2$ Cu $_3$ O $_3$) have reported to become super conductor at	A. 163 K B. 169 K C. 200 K D. 100 K
8	Curie temperature is	A. Differen for chromium oxide and cobalt B. Same for chromium oxide and cobalt C. Same for iron and cobalt D. None of these
9	The curie temp for iron is about	A. 800 ^o C B. 740 ^o C C. 750 ^o C D. 650 ^o C
10	The domain theory of magnet is important to explain the behaviour of	A. Diamagnets B. Paramagnets C. Ferromagnets D. All of these
11	A pentaralent impurity in Si	A. a free electron and a free hole B. a free hole C. a free electron D. No free particle
12	At 0 K a piece of silicon is a	A. Conductor B. Semi-conductor C. Insulator D. All
13	Coercive force is used to	A. Demagnetize the material B. Magnetize the material C. Extend it D. None of these
14	Which of the following has bulk modulus?	A. Water B. Gas C. Honey D. All
15	There is regular arrangement of molecules in:	A. Amorphous solids B. Crystalline solids C. Both a and b

		2
16	The word amorphous means:	A. Regular structured B. Without form or structure C. Frozen structured D. None of above
17	The solid with definite M.L are called:	A. Crystalline B. Amorphous C. Polymeric D. None of above
18	Natural rubber is an example of:	A. Crystalline solids B. Amorphous solids C. Polymeric solids D. None of above
19	The SI unit of Stress is:	A. Nm B. Nm ² C. NM ⁻² D. Nm ³
20	The unit of strain is:	A. Nm B. Nm ⁻² C. no unit D. Nm ²
21	The ratio of applies stress to volumetric strain is called:	A. Young modulus B. Shear modulus C. Bulk modulus D. Tensile modulus
22	Shear modulus is expressed as:	A. G = tanθ/F/A B. F/A/tanθ C. F/tanθ D. tanθ/A
23	Conductors have conductivities of order:	A. $10 < sup > 3 < /sup > (\Omega m) - 1$ B. $10 < sup > 7 < /sup > (\Omega m) < sup > 1 < /sup > C. 10 < sup > 7 < /sup > \Omega m < sup > 1 < /sup > D. 10 < sup > 6 < /sup > \Omega$
24	Semiconductors have conductivity of order:	A. $10 < sup > -8 < sup >$ to $10 < sup > -6 < sup >$ $(\Omega m) < sup > -1 < sup >$ B. $10 < sup > -6 < sup >$ to $10 < sup > -4 < sup >$ ($\Omega m) < sup > -1 < sup >$ C. $10 < sup > 2 < sup >$ to $10 < sup > 1 < sup >$ D. $10 < sup > 5 < sup >$ to $10 < sup > 1 < sup >$ To $10 < sup > 1 < sup >$ To $10 < sup > 1 < sup >$ To $10 < sup >$
25	Energy band theory is based upon	A. Hund's Rule B. Heisenberg uncertainty principle C. Bohr's atomic Model D. Wave mechanical model
26	The temperature at which, semiconductor behaves as insulators:	A. 10k B. 0k C. 237k D. None of above
27	A semiconductor in its extremely pure form is known as:	A. Intrinsic B. Extrinsic C. Both a and b D. None of above
28	Insulators have:	A. An empty conduction band B. Al full valence band C. A large energy gap D. All of above
29	Those materials whose resistivity becomes zero at certain temperature is called:	A. Semiconductor B. Super conductor C. Conductor D. Insulator
30	The first superconductor was discovered in:	A. 1831 B. 1911 C. 1921 D. 1876
31	Recently superconductor discovered is at temperature.	A. 110K B. 143K C. 16.3K D. 119K

D. None of above

32	A wire stretched to double of its length, its strain is:	B. 1 C. 0 D. 0.5
33	Which of the modulus of elasticity is involved in compressing a rod to decrease its length?	A. Young's modulus B. Bulk modulus C. Modulus of elasticity D. None of these
34	Which of the modulus of elasticity is involved in compressing a rod to decrease its length?	A. Young's modulus B. Bulk modulus C. Modulus of elasticity D. None of these
35	If both the length and radius of the rod are doubled, then the modulus of elasticity will:	A. Increase B. Decrease C. Remains the same D. Doubled
36	Curie temperature is a point where :	A. Diamagnetism changes to paramagnetism B. Paramagnetism changes to Diamagnetism C. Ferromagnetism changes to paramagnetism D. Paramagnetism changes to Ferromagnetism
37	A cable breaks if stretched by more than 2mm. It is cut into two equal parts. How much either part can be stretched without breaking?	A. 25 m B. 1mm C. 2mm D. 0.5 m
38	Which one is not a crystalline solid.	A. Zinc B. Copper C. Nylon D. None of these
39	Which one of the following is crystalline solid.	A. Zirconia B. Glassy solid C. Natural rubber D. Poly strene
40	There are different crystal systems. The number of these crystal system is.	A. 3 B. 4 C. 5 D. 7
41	The number of crystal system are	A. Three B. Five C. Seven D. Fifteen
42	The crystalline structure of NaCl is.	A. Cubical B. Hexagonal C. Tri gonal D. Tetragonal
43	the substances in which the atoms do not form magnetic dipoles are called.	A. Diamagnetic B. Para magnetic C. Ferro magnetic D. Crystal
44	A solid in which there is not regular arrangement of molecules is called.	A. Glassy solid B. <div>Amorphous solid</div> C. Crystalline solid D. Both a and b
45	In glass, molecules are irregularly arranged so it is known as.	A. Solid B. Liquid C. Solid liquid D. Gas
46	Which one of the following is polymeric solids	A. Glass B. Nylon C. Copper D. Zinc
47	The SI unit of stress is same as that of.	A. Pressure B. Force C. Momentum D. Work
48	Young's modulus for water's is	A. Zero B. 1 C. 2 D. 3
		A VAL

49	Out of the following which material is brittle.	A. vvrougnt iron B. Copper C. Tungsten D. High steel carbon
50	The ability of a body to return to its original shape is called.	A. Strain B. Stress C. Elasticity D. Plasticity
51	Which one of the following is ductile substance.	A. Copper B. Lead C. Wrought iron D. All of them
52	substance which undergo plastic deformation until they break are known as.	A. Brittle substances B. Ductile substance C. Non magnetic substance D. Magnetic substance
53	Substance which break just after the elastic limit is reached are called as.	A. Ductile substances B. Hard substances C. Britto substances D. Soft substances
54	Which of the following does not undergo plastic deformation.	A. Copper B. Wrought iron C. Head D. Glass
55	Which one is not a ductile material	A. Lead B. Steel C. Copper D. Wrought Iron
56	Example of ductile substance is.	A. Glass B. Wood C. Lead D. Oxygen
57	Glass and high steel carbon are example of.	A. Ductile substances B. Brittle substances C. Soft substances D. Hard substances
58	To get N-Type the Ge is doped with	A. Aluminium B. Arsenic C. Boron D. Indium
59	Which type of impurity is to be added to a pure semi conductor crystal to provide holes.	A. Monovalent B. Trivalent C. Tetravalent D. Pentavalent
60	In 'N' type material, the minority charge carriers are.	A. Free electrons
		B. Holes C. Protons D. Mesons
61	Donor impurities are	B. Holes C. Protons
61	Donor impurities are Which one is pentavalent impurity	B. Holes C. Protons D. Mesons A. Germanium, silicon B. Indium, galium C. Antimony, arsenic
		B. Holes C. Protons D. Mesons A. Germanium, silicon B. Indium, galium C. Antimony, arsenic D. Diamond, carbon A. Boron B. Gallium C. Antimony
62	Which one is pentavalent impurity	B. Holes C. Protons D. Mesons A. Germanium, silicon B. Indium, galium C. Antimony, arsenic D. Diamond, carbon A. Boron B. Gallium C. Antimony D. Indium A. Aresincl, phosphorus B. Boron, gallium C. Arsenic, antimony
62	Which one is pentavalent impurity Which one pair belongs to acceptor impurity.	B. Holes C. Protons D. Mesons A. Germanium, silicon B. Indium, galium C. Antimony, arsenic D. Diamond, carbon A. Boron B. Gallium C. Antimony D. Indium A. Aresincl, phosphorus B. Boron, gallium C. Arsenic, antimony D. Antimony, indium A. Silver B. Lead C. Germanium

3 7	The critical temperature of mercury is.	A. 1.18 K B. 4.2 K
	The officer temperature of mercury is.	C. 3.72 K D. 7.2 K
		A. 1 atom to 10 ⁴
88	In extrinsic semiconductors doping is of the order of.	B. 1 atom to 10 ⁶
		C. 1 atom to 10 ⁸ D. 1 atom to 10 ³
		D. 1 atom to 10 ³
		A. Ferromagnetic
69	After curie temperature.	B. Paramagnetic
		C. Magnetic
		D. Diamagnetic
	The substance which atom cooperates with each other in such a way so as to exhibit a	A. Ferromagnetic
0		B. Paramagnetic
	strong magnetic field is called.	C. Diamagnetic D. Non magnetic
		D. Non magnetic
	Soft magnetic material is	A. Sodium
71		B. Steel
		C. Iron
		D. Copper
	A solid having regular arrangement of molecules throughout its structure is called.	A. Amorphous solid
72		B. Polymeric solid
_		C. Crystalline solid
		D. Glassy solid
	The most suitable metal for making permanent magnet is.	A. Iron
' 3		B. Aluminium
•		C. Steel
		D. Copper
	Very weak magnetic field produced by brain can be detected by	A. MRI
' 4		B. CAT scans
•		C. Squid
		D. CRO
		A. Steel
75	Which of the following has least hysteresis loop area.	B. Wrought Iron
•	Timen of the femaling has least hystoreole loop area.	C. Soft Iron
		D. Cobalt
	Domains are existed in	A. Ferromagnetic materials
' 6		B. Paramagnetic materials
		C. Semi conductors
		 D. Diamagnetic materials