

## Biology FSC Part 2 Chapter 20 Online MCQ's Test

| Sr | Questions                                                                                                           | Answers Choice                                                                          |
|----|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1  | The number of chromosomes in frog is                                                                                | A. 52<br>B. 26<br>C. 13<br>D. 7                                                         |
| 2  | The number of nucleotides in the DNA of a typical human chromosome is about                                         | A. 10 Million<br>B. 40 million<br>C. 80 million<br>D. 140 million                       |
| 3  | Adenine and guanine are called                                                                                      | A. Purines<br>B. Pyrmidines<br>C. Both a & b<br>D. None of these                        |
| 4  | DNA changes are called mutations and the organisms that have undergone such changes are called                      | A. Wild types<br>B. Changer<br>C. Mutants<br>D. Transmutants                            |
| 5  | Each tRNA has a sequence of three bases called anticodon which is complementary to codon of                         | A. rRNA<br>B. tRNA<br>C. mRNA<br>D. snRNA                                               |
| 6  | Every 200 nucleotides the DNA duplex is coiled around a core of eight histone proteins forming a complex known as a | A. Histomone<br>B. Nucleosome<br>C. Peroxisome<br>D. Glyoxisome                         |
| 7  | Genetic code is a combination of 3 nucleotides in DNA which specify a particular                                    | A. Amino acid<br>B. Fatty acid<br>C. Vitamin<br>D. Steriod                              |
| 8  | $^{32}\mathrm{P}$ and $^{35}\mathrm{S}$ labeled viruses were used in his experiments by                             | A. Watson & Crick<br>B. Hershey & Chase<br>C. Wilkins & Franklin<br>D. Correns & Bridge |
| 9  | Histones are positively charged due to an abundance of the basic amino acids                                        | A. Arginine<br>B. Lysine<br>C. Both a & c<br>D. Alanine                                 |
| 10 | Human cells have 46 chromosomes consisting of                                                                       | A. 20 pairs<br>B. 21 pairs<br>C. 22 pairs<br>D. 23 pairs                                |
| 11 | In 1944 Oswald Avery along with Colin Macleod and Maclyn McCarty repeated experiments of                            | A. Lamarck<br>B. Griffith<br>C. Darwin<br>D. Spemann                                    |
| 12 | In 1953 Watson and Crick proposed structure of the                                                                  | A. RNA molecule<br>B. ATP molecule<br>C. DNA molecule<br>D. NAD molecule                |
| 13 | In prokaryote within promoter there are two binding sites TTGACA also called -35 sequence and TATAAT also called    | A10 sequence<br>B 20 sequence<br>C 30 sequence<br>D 35 sequence                         |
| 14 | In the double helix of DNA adenine forms two hydrogen bonds with                                                    | A. Thymine<br>B. Guanine<br>C. Cytosine<br>D. Uracil                                    |
| 15 | All the 64 codons were tested by                                                                                    | A. Marshall Nirenberg<br>B. Philip Leader<br>C. Har Gobind Khorana<br>D. All a,b,and,c  |

| 16 | Okazaki fragments are about 1000 - 2000 nucleotides long in                  | A. Prokaryotes<br>B. Eukaryotes<br>C. Both a & b<br>D. None of these                                                                                                                |
|----|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17 | Origin site of replication is one in                                         | A. Prokaryotes<br>B. Eukaryotes<br>C. None of these<br>D. Both a & b                                                                                                                |
| 18 | Innate behavior is all but;                                                  | A. Heritable<br>B. Intrinsic<br>C. Sterotypic<br>D. Flexible                                                                                                                        |
| 19 | Innate behavior is all except;                                               | A. Coded in DNA<br>B. Modified in individuals life span<br>C. Modified with species evolution<br>D. Programmed responses to<br>external stimuli                                     |
| 20 | Which one is non-directed orientation?                                       | A. Taxis<br>B. Kinesis<br>C. Tropism<br>D. Imprinting                                                                                                                               |
| 21 | Trial and error learning has no role in                                      | A. Operant learning<br>B. Classical conditioning<br>C. Insight<br>D. Imprinting                                                                                                     |
| 22 | Advantage of pecking orders is to:                                           | <ul> <li>A. Avoids injury to the strong animals</li> <li>B. Protect territory</li> <li>C. Find suitable mate</li> <li>D. Assign specific role to individual subordinates</li> </ul> |
| 23 | Chromosomal part which uncoils, during inter phase is called.                | A. Chromatids<br>B. Satellite DNA<br>C. Euchromatin<br>D. Heterochromatin                                                                                                           |
| 24 | Chromosomes appear inside the nucleus at the time of.                        | A. Cell division<br>B. Cell maturation<br>C. Cell elongation<br>D. Cell differentiation                                                                                             |
| 25 | Morphological characteristics of chromosome are collectively called.         | A. Holotype<br>B. Karyokinesis<br>C. Karyotype<br>D. Neotype                                                                                                                        |
| 26 | A chromosome with equal length of its arms.                                  | A.<br>Acrocentric<br>B. Metacentric<br>C. sub meta centric<br>D. Telocentric                                                                                                        |
| 27 | No of chromosomes in Honey bee are.                                          | A. 6<br>B. <div>20</div><br>C. 32<br>D. 40                                                                                                                                          |
| 28 | The base pairs in human genome are.                                          | A. Two billion<br>B. Three billion<br>C. Four billion<br>D. Five billion                                                                                                            |
| 29 | The no of chromosome in mouse is                                             | A. 6<br>B. 32<br>C. 26<br>D. 40                                                                                                                                                     |
| 30 | Highly condensed portions of the chromatin are called.                       | <ul><li>A. Homochromatin</li><li>B. Heterochromatin</li><li>C. Euchromatin</li><li>D. Achromatin</li></ul>                                                                          |
| 31 | The particular array of chromosomes that an individual possesses called its. | A. Genotype<br>B. Phenotype<br>C. epistasis<br>D. Karvotype                                                                                                                         |
| 32 | Unlike most proteins, histones are.                                          | A. Positively charges<br>B. Neutral<br>C. discharged<br>D. Negatively charged                                                                                                       |
|    |                                                                              | A John Brown                                                                                                                                                                        |

| 33 | In 1882, chromosomes were first observed by.                                                                        | B. T.H.Morgan<br>C. Walter fleming<br>D. Walther sutton                                |
|----|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 34 | Walter Fleming first discovered chromosomes in the dividing cells of.                                               | A. Frog larvae<br>B. Sea urchin larvae<br>C. Insect larvae<br>D. Salamander larvae     |
| 35 | V-shaped chromosomes are called.                                                                                    | A. Acrocentric<br>B. Metacentric<br>C. Telocentric<br>D. submetacentric                |
| 36 | A central role for chromosomes in heredity was first suggested in 1900 by.                                          | A. Karl correns<br>B. W. Sutton<br>C. F. Griffiths<br>D. T.H.Morgan                    |
| 37 | Chromosomal theory of inheritance was first formulated by.                                                          | A. Karl Correns<br>B. T.H.Morgan<br>C. W. Sutton<br>D. Carvin Bridges                  |
| 38 | Transfer of genetic material from one cell to other that can alter the genetic make up of recipient cell is called. | A. Transcription<br>B. Replication<br>C. Translation<br>D. Transformation              |
| 39 | DNA was discovered in                                                                                               | A. 1869<br>B. 1864<br>C. 1961<br>D. 1972                                               |
| 40 | Repeating units of DNA are called.                                                                                  | A. Histones<br>B. Nucleosides<br>C. Nucleotides<br>D. Amino acids                      |
| 41 | How many million nucleotides are in DNA of typical human chromosome                                                 | A. 140<br>B. 160<br>C. 180<br>D. 200                                                   |
| 42 | Pentose sugar in the molecule of DNA is                                                                             | A. Ribose<br>B. Deoxyribose<br>C. Sucrose<br>D. Lactose                                |
| 43 | The stand which elongates towards the replication fork is.                                                          | A. Leading<br>B. Lagging<br>C. Okazaki<br>D. Primer                                    |
| 44 | Each Okazaki fragment is synthesized by.                                                                            | A. RNA Polymerase<br>B. DNA polymerase<br>C. DNA polymerase I<br>D. DNA polymerase III |
| 45 | In 1953, F . Sanger described the sequence of amino acids of.                                                       | A. Myoglobin<br>B. Insulin<br>C. Keratin<br>D. Globulin                                |
| 46 | In sickle cell anemia disease, a single thymine is replaced with an adenine in the DNA that codes for.              | A. Valine<br>B. Glycine<br>C. Histidine<br>D. Glutamic acid                            |
| 47 | In sickle cell anemia code for glutamic acid is replaced by.                                                        | A. Leucine<br>B. Valine<br>C. Proline<br>D. Histidine                                  |
| 48 | Which strand of DNA is transcribed.                                                                                 | A. coding strand<br>B. Sense strand<br>C. Antisense strand<br>D. Conservative strand   |
| 49 | Human cells contain types of tRNA molecules.                                                                        | A. 20<br>B. 45<br>C. 195<br>D. 300                                                     |
| 50 | RNA polymerase II synthesize.                                                                                       | A. mRNA<br>B. tRNA<br>C. rRNA<br>D. cDNA                                               |

| 51 | Which of the following polymerase synthesize tRNA.                               | A. RNA Polymerase -I<br>B. RNA Polymerase -III<br>C. RNA Polymerase -II<br>D. DNA Polymerase |
|----|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 52 | The copping of mRNA from DNA is called.                                          | A. Translation<br>B. Transduction<br>C. Transcription<br>D. Transformation                   |
| 53 | Anti codes present on                                                            | A. mRNA<br>B. tRNA<br>C. rRNA<br>D. DNA                                                      |
| 54 | Amino acid attachment site of tRNA is.                                           | A. G-end<br>B. 2' -end<br>C. 3'- end<br>D. 5' -end                                           |
| 55 | A strand of DNA, which is not transcribed is called as.                          | A. Template strand<br>B. Antisense strand<br>C. Lagging strand<br>D. coding strand           |
| 56 | Which of the following is a 'start' codon                                        | A. AUG<br>B. UAG<br>C. UAA<br>D. UGA                                                         |
| 57 | Every gene starts with initiation codon AUG which encodes for the amino acid.    | A. Lysine<br>B. Serine<br>C. Proline<br>D. Methionine                                        |
| 58 | Which of the following is a non sense codon.                                     | A. UGA<br>B. UGG<br>C. AUG<br>D. AUC                                                         |
| 59 | Which one of the following is initiation codon.                                  | A. AUG<br>B. GUA<br>C. UGA<br>D. GAC                                                         |
| 60 | Which one of the given is non sense codon.                                       | A. AUG<br>B. ACU<br>C. GAU<br>D. UAA                                                         |
| 61 | A sequence of three nucleotides in mRNA is called.                               | A. Cistron<br>B. Codon<br>C. Anticodon<br>D. Templet                                         |
| 62 | A combination of three nucleotides of DNA that specifies as amio acid is called. | A. Cistron<br>B. Anticodon<br>C. Genetic code<br>D. Entron                                   |
| 63 | A gene with initiation codon, which encodes the amino acid methionine is.        | a. Uaa<br>B. Uag<br>C. Aug<br>D. Ugg                                                         |
| 64 | Genetic code for the amino acid methionine is.                                   | A. AUC<br>B. UGC<br>C. CGC<br>D. AUG                                                         |
| 65 | The genetic code for glycine is.                                                 | A. UAG<br>B. GAU<br>C. GUA<br>D. GGU                                                         |
| 66 | This condition appears as a result of point mutation.                            | A. Down syndrome<br>B. Turner syndrome<br>C. Sickel cell Anaemia<br>D. Klinefelter syndrome  |