

Biology FSC Part 2 Chapter 20 Online MCQ's Test

Sr	Questions	Answers Choice
1	The number of chromosomes in frog is	A. 52 B. 26 C. 13 D. 7
2	The number of nucleotides in the DNA of a typical human chromosome is about	A. 10 Million B. 40 million C. 80 million D. 140 million
3	Adenine and guanine are called	A. Purines B. Pyrmidines C. Both a & D. None of these
4	DNA changes are called mutations and the organisms that have undergone such changes are called	A. Wild types B. Changer C. Mutants D. Transmutants
5	Each tRNA has a sequence of three bases called anticodon which is complementary to codon of	A. rRNA B. tRNA C. mRNA D. snRNA
6	Every 200 nucleotides the DNA duplex is coiled around a core of eight histone proteins forming a complex known as a	A. Histomone B. Nucleosome C. Peroxisome D. Glyoxisome
7	Genetic code is a combination of 3 nucleotides in DNA which specify a particular	A. Amino acid B. Fatty acid C. Vitamin D. Steriod
8	$^{32}\mathrm{P}$ and $^{35}\mathrm{S}$ labeled viruses were used in his experiments by	A. Watson & Damp; Crick B. Hershey & Damp; Chase C. Wilkins & D. Correns & D. Bridge
9	Histones are positively charged due to an abundance of the basic amino acids	A. Arginine B. Lysine C. Both a & D. Alanine
10	Human cells have 46 chromosomes consisting of	A. 20 pairs B. 21 pairs C. 22 pairs D. 23 pairs
11	In 1944 Oswald Avery along with Colin Macleod and Maclyn McCarty repeated experiments of	A. Lamarck B. Griffith C. Darwin D. Spemann
12	In 1953 Watson and Crick proposed structure of the	A. RNA molecule B. ATP molecule C. DNA molecule D. NAD molecule
13	In prokaryote within promoter there are two binding sites TTGACA also called -35 sequence and TATAAT also called	A10 sequence B 20 sequence C 30 sequence D 35 sequence
14	In the double helix of DNA adenine forms two hydrogen bonds with	A. Thymine B. Guanine C. Cytosine D. Uracil
15	All the 64 codons were tested by	A. Marshall Nirenberg B. Philip Leader C. Har Gobind Khorana D. All a,b,and,c

16	Okazaki fragments are about 1000 - 2000 nucleotides long in	A. Prokaryotes B. Eukaryotes C. Both a & D. None of these
17	Origin site of replication is one in	A. Prokaryotes B. Eukaryotes C. None of these D. Both a & D.
18	Innate behavior is all but;	A. Heritable B. Intrinsic C. Sterotypic D. Flexible
19	Innate behavior is all except;	A. Coded in DNA B. Modified in individuals life span C. Modified with species evolution D. Programmed responses to external stimuli
20	Which one is non-directed orientation?	A. Taxis B. Kinesis C. Tropism D. Imprinting
21	Trial and error learning has no role in	A. Operant learning B. Classical conditioning C. Insight D. Imprinting
22	Advantage of pecking orders is to:	A. Avoids injury to the strong animals B. Protect territory C. Find suitable mate D. Assign specific role to individual subordinates
23	Chromosomal part which uncoils, during inter phase is called.	A. Chromatids B. Satellite DNA C. Euchromatin D. Heterochromatin
24	Chromosomes appear inside the nucleus at the time of.	A. Cell division B. Cell maturation C. Cell elongation D. Cell differentiation
25	Morphological characteristics of chromosome are collectively called.	A. Holotype B. Karyokinesis C. Karyotype D. Neotype
26	A chromosome with equal length of its arms.	A. br>Acrocentric B. Metacentric C. sub meta centric D. Telocentric
27	No of chromosomes in Honey bee are.	A. 6 B. <div>20</div> C. 32 D. 40
28	The base pairs in human genome are.	A. Two billion B. Three billion C. Four billion D. Five billion
29	The no of chromosome in mouse is	A. 6 B. 32 C. 26 D. 40
30	Highly condensed portions of the chromatin are called.	A. Homochromatin B. Heterochromatin C. Euchromatin D. Achromatin
31	The particular array of chromosomes that an individual possesses called its.	A. Genotype B. Phenotype C. epistasis D. Karvotype
32	Unlike most proteins, histones are.	A. Positively charges B. Neutral C. discharged D. Negatively charged
		A. John Brown

33	In 1882, chromosomes were first observed by.	B. T.H.Morgan C. Walter fleming D. Walther sutton
34	Walter Fleming first discovered chromosomes in the dividing cells of.	A. Frog larvae B. Sea urchin larvae C. Insect larvae D. Salamander larvae
35	V-shaped chromosomes are called.	A. Acrocentric B. Metacentric C. Telocentric D. submetacentric
36	A central role for chromosomes in heredity was first suggested in 1900 by.	A. Karl correns B. W. Sutton C. F. Griffiths D. T.H.Morgan
37	Chromosomal theory of inheritance was first formulated by.	A. Karl Correns B. T.H.Morgan C. W. Sutton D. Carvin Bridges
38	Transfer of genetic material from one cell to other that can alter the genetic make up of recipient cell is called.	A. Transcription B. Replication C. Translation D. Transformation
39	DNA was discovered in	A. 1869 B. 1864 C. 1961 D. 1972
40	Repeating units of DNA are called.	A. Histones B. Nucleosides C. Nucleotides D. Amino acids
41	How many million nucleotides are in DNA of typical human chromosome	A. 140 B. 160 C. 180 D. 200
42	Pentose sugar in the molecule of DNA is	A. Ribose B. Deoxyribose C. Sucrose D. Lactose
43	The stand which elongates towards the replication fork is.	A. Leading B. Lagging C. Okazaki D. Primer
44	Each Okazaki fragment is synthesized by.	A. RNA Polymerase B. DNA polymerase C. DNA polymerase I D. DNA polymerase III
45	In 1953, F . Sanger described the sequence of amino acids of.	A. Myoglobin B. Insulin C. Keratin D. Globulin
46	In sickle cell anemia disease, a single thymine is replaced with an adenine in the DNA that codes for.	A. Valine B. Glycine C. Histidine D. Glutamic acid
47	In sickle cell anemia code for glutamic acid is replaced by.	A. Leucine B. Valine C. Proline D. Histidine
48	Which strand of DNA is transcribed.	A. coding strand B. Sense strand C. Antisense strand D. Conservative strand
49	Human cells contain types of tRNA molecules.	A. 20 B. 45 C. 195 D. 300
50	RNA polymerase II synthesize.	A. mRNA B. tRNA C. rRNA D. cDNA

, .. oo.... D.o....

51	Which of the following polymerase synthesize tRNA.	A. RNA Polymerase -I B. RNA Polymerase -III C. RNA Polymerase -II D. DNA Polymerase
52	The copping of mRNA from DNA is called.	A. Translation B. Transduction C. Transcription D. Transformation
53	Anti codes present on	A. mrna B. trna C. rrna D. dna
54	Amino acid attachment site of tRNA is.	A. G-end B. 2' -end C. 3'- end D. 5' -end
55	A strand of DNA, which is not transcribed is called as.	A. Template strand B. Antisense strand C. Lagging strand D. coding strand
56	Which of the following is a 'start' codon	A. AUG B. UAG C. UAA D. UGA
57	Every gene starts with initiation codon AUG which encodes for the amino acid.	A. Lysine B. Serine C. Proline D. Methionine
58	Which of the following is a non sense codon.	A. UGA B. UGG C. AUG D. AUC
59	Which one of the following is initiation codon.	A. AUG B. GUA C. UGA D. GAC
60	Which one of the given is non sense codon.	A. AUG B. ACU C. GAU D. UAA
61	A sequence of three nucleotides in mRNA is called.	A. Cistron B. Codon C. Anticodon D. Templet
62	A combination of three nucleotides of DNA that specifies as amio acid is called.	A. Cistron B. Anticodon C. Genetic code D. Entron
63	A gene with initiation codon, which encodes the amino acid methionine is.	A. UAA B. UAG C. AUG D. UGG
64	Genetic code for the amino acid methionine is.	A. AUC B. UGC C. CGC D. AUG
65	The genetic code for glycine is.	A. UAG B. GAU C. GUA D. GGU
66	This condition appears as a result of point mutation.	A. Down syndrome B. Turner syndrome C. Sickel cell Anaemia D. Klinefelter syndrome