

11th Class FSC Mathematics Chapter 9 Test Online

Sr	Questions	Answers Choice
1	The system of measurement in which the angle is measured in degrees, and its sub-units, minutes and seconds is called the:	A. circular system B. sexagesimal system C. decimal system D. degree system
2	In circular system the angle is measured in:	A. radians B. degrees C. degrees, minutes D. degrees, seconds
3	The area of a sector of a circular region of radius r with length of the arc of the sector equal to s is:	A. r⊖ B. rs
4	In a circle of radius r, an arc of length kr will subtend in angle of radians at the center:	A. s B. k C. r D. Θ
5	If s denotes the length of the arc intercepted on a circle of radius r by a central angle of $\boldsymbol{\alpha}$ radians, then:	A. $s = r\alpha$ B. $s = r + \alpha$ D. none of these
6	The direction of an angle Θ is determined by its:	A. value B. magnitude C. ratio D. sign
7	The quadrant of an angle Θ is determined by its:	A. sign B. value C. ratio D. magnitude
8	The angle between 0° and 360° and co-terminal with - 620° is:	A. 100° B. 200° C. 300° D. 320°
_	700 –	D. none of these
9	- 72° =:	D. none of these
10	Question Image	D. Hone of these
		D. Hone of these
10	Question Image	A. radius × arc B. radius - arc
10	Question Image Question Image	A. radius × arc
10 11 12	Question Image Question Image The number of radius in the angle subtended by an arc of a circle at the center =	A. radius × arc
10 11 12 13	Question Image Question Image The number of radius in the angle subtended by an arc of a circle at the center = To convert any angle in degrees into radians, we multiply the measure by:	A. radius × arc
10 11 12 13 14	Question Image Question Image The number of radius in the angle subtended by an arc of a circle at the center = To convert any angle in degrees into radians, we multiply the measure by: To convert any angle in radians into degrees, we multiply the measure by:	A. radius × arc B. radius - arc C. 180°
10 11 12 13 14	Question Image Question Image The number of radius in the angle subtended by an arc of a circle at the center = To convert any angle in degrees into radians, we multiply the measure by: To convert any angle in radians into degrees, we multiply the measure by: 1 radian is equal to:	A. radius × arc B. radius - arc C. 180°
10 11 12 13 14 15	Question Image Question Image The number of radius in the angle subtended by an arc of a circle at the center = To convert any angle in degrees into radians, we multiply the measure by: To convert any angle in radians into degrees, we multiply the measure by: 1 radian is equal to: 1° is equal to:	A. radius × arc B. radius - arc C. 180° D. none of these
10 11 12 13 14 15 16	Question Image The number of radius in the angle subtended by an arc of a circle at the center = To convert any angle in degrees into radians, we multiply the measure by: To convert any angle in radians into degrees, we multiply the measure by: 1 radian is equal to: 1° is equal to: 180° =:	A. radius × arc B. radius - arc C. 180° D. none of these D. π radians A. 30° B. 45° C. 60°
10 11 12 13 14 15 16 17	Question Image The number of radius in the angle subtended by an arc of a circle at the center = To convert any angle in degrees into radians, we multiply the measure by: To convert any angle in radians into degrees, we multiply the measure by: 1 radian is equal to: 1° is equal to: 180° =: Question Image	A. radius × arc B. radius - arc C. 180° D. none of these D. π radians A. 30° B. 45° C. 60° D. 75° A. I B. II C. III

21	If $\sin \alpha < 0$ and $\cos \alpha > 0$, then α lies in:	B. II C. III D. IV
22	If $\sin\Theta$ <0, $\cos\Theta$ <0 then the terminal arm of the angle lies in quadrant:	A. I B. II C. III D. IV
23	In a triangle if $\alpha > 45^\circ, \beta > 30^\circ$ then Γ cannot be:	A. 90° B. 100° C. 120° D. 10°
24	Which one is a quadrant angle ?	A. 60° B. 180° C. 120° D. 30°
25	Which one is not a quadrant angle ?	A. 0° B. 90° C. 280° D. 270°
26	If the initial side of an angle is the positive x-axis and the vertex is at the origin, the angle is said to be in the:	A. initial position B. finalposition C. normalposition D. standardposition
27	$\cos^4\Theta$ - $\sin^4\Theta$ =	A. sin 20 B. cos 20 C. tan 20 D. sec 20
28	$(1 - \sin^2\Theta) (1 + \tan^2\Theta) =$	A. 0 B. 1 C. Θ D1
29	$(1 - \cos^2\Theta) (1 + \cot^2\Theta) =$	A. tan ² Θ B. 0 C. 1 D1
30	If $\sin \Theta + \csc \Theta = 2$, then $\sin^2 \Theta + \csc^2 \Theta =$	A. 2 B. 4 C. 0 D. 8