

Biology Fsc Part 1 Chapter 3 Online Test

Sr	Questions	Answers Choice
1	If more substrate to an already occurring enzymatic reaction is added more enzyme activity is seen because	 A. There is probably more substrate present than there is enzyme B. There is probably more enzyme available than there is substrate C. There is probably more product present than either substrate or enzyme D. The enzyme substrate complex is probably failing to from during the reaction
2	If we add more substrate to already occurring enzymatic reaction and it has no effect on the rate of reaction, then what will be be the situation of the following	A. Saturation B. Denaturation C. Composition D. Inhibition
3	The rate of an enzyme catalyzed reaction	 A. Is constant under condition B. Decreases as substrate concentration increases C. Cannot be measured D. Can be reduced by inhibitors
4	The active site of an enzyme	 A. Never changes B. Forms no chemical bond with substrate C. Determines by its structure the specificity of an enzyme D. Looks like a lump projection from the surface of an enzyme
5	Which one of the following statements about enzymes is not true	 A. They consist of proteins or without a non-proteins part B. They change the rate of catalyzed reaction C. They are sensitive to heat D. They are non-specific in their action
6	The catalytic activity of an enzyme is restricted to its small protein called	A. Active site B. Passive site C. Intermediate D. Above all
7	An activated enzyme made of polypeptide chain and a co-factor is	A. Substrate B. Co-enzyme C. Apoenzyme D. Holoenzyme
8	The rate of reaction of enzyme directly depends upon	 A. Amount of enzyme present at a specific time at unlimited substrate concentration B. Nature of substrate C. Maximum pH level D. Low temperature
9	Koshland in 1959 proposed the modified form of	A. Fluid mosaic model B. Induce fit model C. Unit membrane model D. Reflective index model
10	The reversible inhibitors usually constitute	A. Strong linkage with enzyme B. Weak linkage with enzyme C. No Linage with enzyme D. medium linkage
11	The raw material for co-enzymes are	A. Lipids ` B. Proteins C. Vitamins D. None of these
12	Co-enzyme is a	 A. Covalently bonded non-protein part of an enzyme B. Loosely bonded non-protein part of an enzyme C. Co-factor consists of metal ions

13	Prosthetic group is	 A. Covalenty bonded non-protein part of an enzyme B. Loosely bonded non-proteins part of an enzyme C. Co-factor consists of metal ions D. None of these
14	The specificity of an enzyme is due to its	A. Cofactor B. Protein nature C. Active site D. Globular shape
15	An enzyme is said to be denatured when	A. It has no co-factor B. It is in a condition of low temperature C. Its structure is destroyed D. None of these
16	Competitive inhibitors	A. Destroy the structure of enzymeB. Resemble structurally with substrateC. Do occupy active siteD. Both b and c are correct
17	Enzyme that are integral part of ribosomes are involved in the synthsis of	A. Lipids B. Carbohydrates C. Proteins D. None of these
18	If non protein part is loosely attached to proteins it is known as.	A. Cofactor B. Co enzyme C. Active site D. Holo ezyme
19	the vitamins are essential raw material for the synthesis of.	A. Activators B. Co factors C. Co enzymes D. Prosthetic group
20	The detachable cofactors of an enzyme is known as.	A. Prosthetic group B. Apo enzyme C. <div>Activator</div> D. Co enzyme
21	Enzymes involved in respiration, are found in.	A. Chloroplasts B. Ribosome C. Mitochondria D. Nucleus
22	Metals is ions are related to.	A. Co enzymes B. Vitamins C. Co factors D. Substrate
23	An activated enzyme with a co enzyme is called.	A. Apoenzymes B. Activators C. Holo enzymes D. Co enzymes
24	Covalently bonded non protein part is called.	A. Co factor B. Activator C. Prosthetic group D. Co enzyme
25	Co enzymes are closely related to.	A. Amino acids B. Vitamins C. Enzyms D. Non protein particles
26	An activated enzyme consisting of a polypodies chain and a co factor is called.	A. Apo enzymeB. Co enzymesC. Holo enzymesD. Both a and b
27	If protein part of co factor is covalently bond to enzyme, it is called is.	A. Co- Enzyme B. Prosthetic group C. Activator D. apoezyme
28	The detachable co factor of an enzyme is known as	A. Co enzyme B. Ap enzyme C. Activator D. Prosthetic group
29	An enzyme with its co enzyme or prosthetic removed is designated as	A. Activator B. Co enzyme

D. None of these

		D. Holoenzyme
30	The activation energy of the reaction is lowered by	A. Co enzyme B. Enzyme C. Product D. Substrate
31	Enzyme lower down the energy of.	A. Kinetic B. Potential C. Activation D. Ionic
32	An enzyme reacts only with its specific.	A. Surface B. Product C. Substrate D. Inhibitor
33	Lock and key model was proposed by	A. Koshland B. Emil Fisher C. Watson D. Flemming
34	Three dimensional globular protein is.	A. Starch B. Glucose C. Enzyme D. Antibiotic
35	According to Lock and key model, the activate is.	A. Soft structure B. Flexible structure C. Rigid structure D. Attractive structure
36	Induced fit model was proposed by.	A. Emil Fischer B. Pasteur C. Jenner D. Koshland
37	Emil Fisher proposed a lock and key model in	A. 1990 B. 1880 C. 1890 D. 1800
38	Optimum pH for sucrase is	A. 2.00 B. 4.50 C. 5.50 D. 7.60
39	The optimum pH of salivary amylase is.	A. 2.80 B. 4.80 C. 6.80 D. 8.80
40	The optimum pH of enzyme pepsin is	A. 2 B. 6.8 C. 7 D. 9
41	The enzyme with optimum pH = 7.60 is	A. Arginase B. Enterokinase C. Catalase D. Sucrase
42	The optimum temperature of human body enzyme is.	A. 27 ^o C B. 37 ^o C C. 47 ^o C D. 57 ^o C
43	A little change in phmay leadsto.	 A. Effects enzyme only in high concentration B. Retarder even block enzyme activity C. Ionization of substrate D. Ionization of active sites of enzyme
44	The optimum pH of enter kinase is	A. 1.50 B. 3.50 C. 5.50 D. 7.50
45	Optimum pH value for enzyme pepsin is.	A. 4.50 B. 9.00 C. 2.00 D. 5.50
46	The optimum pH of catalase is	A. 6.60 B. 7.60 C. 8.60 D. 9.60

47	Optimum pH values for enzyme arginase is	A. 7.60 B. 9.70 C. 8.60 D. 9.52
48	The optimum pH of pancreatic Lipase is	A. 7.00 B. 9.00 C. 6.40 D. 5.20
49	Optimum pH for action of pancreatic lipase is	A. 3.00 B. 5.00 C. 7.00 D. 9.00
50	The enzyme with optimum pH 5.50 is	A. Arginase B. Sucrase C. pepsin D. Enter kinase
51	The competitive inhibitor of succinic acid is.	A. Fumaric acid B. Malonic acid C. Acetic acid D. Citric acid
52	The inhibitor which may destroy the Globular structure of enzyme is.	A. Competitive B. Non competitive C. Reversible D. Irreversible
53	Poisons, like cyanide are examples of.	A. Enzymes B. Co enzymes C. Inhibitors D. Co factors
54	Irreversible inhibitors form which bonds active site.	A. Hydrogen bonds B. Covalent bonds C. Ionic bonds D. Hydrophobic bond