

FA Part 2 Mathematics Chapter 6 Test Online

Sr	Questions	Answers Choice
1	The curves obtained by cutting a double right circular cone by a are called conics:	A. Straight line B. Plane C. Curve D. None of these
2	The two parts of a right circular cones are called:	A. Nappes B. Apex of the cone C. Generator D. Vertex
3	The fixed point of the conic is called:	A. Directrix B. Vertex C. Focus D. None of these
4	If the cone is cut by a plane perpendicular to the axis of the cone, then the section is a $/$ an:	A. Parabola B. Circular cone C. Ellipse D. Circle
5	If the cutting plane is slightly tillted and cuts only one nappe of the cone, then the section is a / an:	A. Ellipse B. Circular cone C. Circle D. Point circle
6	If the cutting plane is parallel to the axis of the cone and intersects both of its nappes, then the section a / an:	A. Parabola B. Hyperbola C. Ellipse D. None of these
7	The set of all points in the plane that are equally distant from a fixed point is called a / an:	A. Circle B. Circular cone C. Ellipse D. Point circle
8	If the radius of a circle is zero, then the circle is called a / an:	A. Circle B. Circular cone C. Ellipse D. Point circle
9	If r is the radius of the circle and its center is at origin, then equation of circle is:	A. x ² = a ² B. x ² B. x ² c. x ² C. x ² D. x ²
10	In equation of circle, coefficient of each of x^2 and y^2 are:	A. Not equal B. Opposite in signs C. Equal D. None of these
11	A chord containing the center of the circle is called of the circle:	A. Diameter B. Chord C. Radius D. None of these
12	The ratio between the measure of the radial segment and the diameter of a circle is:	A. 2 : 1 B. 4 : 3 C. 1 : 2
13	The distance between the center of a circle and any point of the circle is called:	A. Tangents B. Secant C. Diameter D. Radius
14	The equation $x^2 + y^2 + 2x + 3y = 10$ represents a:	A. A pair of lines B. Circle C. Ellipse D. Hyperbola
		A. Radius

15	A line segment whose end points lie on the circle is called a of the circle.	B. Chord C. Diameter D. None of these
16	Measure of the central angle of a minor arc is the measure of the angle subtended in the corresponding major arc.	A. Equal B. Double C. Not equal to D. Triple
17	The center of circle $(x+3)^2 + (y-2)^2 = 16$ equals:	A. (-3, 2) B. (3, -2) C. (3, 2) D. (-3, -2)
18	If equation of circle is $(x - h)^2 + (y - k)^2 = r^2$, then center of a circle:	A. (-h, -k) B. (h, k) C. (-h, k) D. (h, -k)
19	The center of circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is:	A. (-g, -f) B. (-f, -g) C. (0, 0) D. (g, f)
20	The radius of circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is:	
21	The radius of circle $x^2 + y^2 + ax + by + c = 0$ is:	D. None
22	Question Image	
23	The radius of point circle is:	A. 0 B. (0, 0) C. r D. 1
24	If r is the radius of any circle and C its center, then any point $P(x_1, y_1)$ lies on the circle only if:	A. CP < r B. CP > r C. CP = r D. None of these
25	If a point lies inside a circle, then its distance from the center is:	A. Equal to the radiusB. Less then the radiusC. Greater then the radiusD. Equal to or greater than the
26	If r is the radius of any circle and C its center, then any point $P(x_1, y_1)$ lies outside the circle only if:	A. CP < r B. CP = r C. CP > r D. None of these
27	Point p (-5, 6) lies the circle $x^2 + y^2 + 4x - 6y - 12 = 0$	A. Outside B. Inside C. On D. None of these
28	Point (5, 6) lies the circle $x^2 + y^2 = 81$:	A. Outside B. Inside C. On D. None of these
29	A line that touches the curve without cutting through it is called:	A. Straight line B. Tangent line C. Normal line D. Vertical line
30	A line perpendicular to a radial chord of a circle at the end-point (which lies on the circle) is a:	A. Secant B. Diameter C. Chord D. Tangent
31	A line segment having both the end-points on a circle and not passing through the center is called a:	A. A chord B. A secant C. A diameter D. None of these
32	A line through a point say P perpendicular to the tangent to the curve at P is called:	A. Straight line B. Tangent line C. Normal line D. None of these
33	A circle is of radius 5 cm, the distance of a chord 8 cm long from its center is:	A. 4 cm B. 3cm C. 2.5cm D. 3.4cm
34	One of the angles of a triangle inscribed in a circle is of 40°. If one of its' the diameter, the	A. 30°, 110° B. 40°, 100° C. 50°, 90°

		D. 20°, 120°
35	Two circles of radius 3 cm and 4 cm touch each other externally. The distance between their centers is:	A. 1 cm B. 7cm C. 4cm D. 5cm
36	The condition for the line $y = mx + c$ to be a tangent to the circle $x^2 + y^2 = a^2$ is $c = $:	
37	Two arcs of two different circles are congruent if:	 A. The circles are congruent B. The corresponding central angles are congruent C. Both a and b D. None of the above
38	If a circle and a line intersect in two points, then the line is called:	A. A chord B. A secant C. A diameter D. None of these
39	Perpendicular dropped from the center of a circle on a chord the chord:	A. Normal B. Bisects C. Equal to D. None of these
40	Two imaginary tangents can be drawn to a circle from any point $P(x_1, y_1)$ the circle:	A. Inside B. On C. Outside D. None of these
41	An angle in a semi-circle is:	A. 0° B. 90° C. 180° D. 60°
42	Two real and distinct tangents can be drawn to a circle from any point $P(x_1, y_1)$ the circle:	A. Inside B. On C. Outside D. None of these
43	Length of tangent from (0,1) to $x^2 + y^2 + 6x - 3y + 3 = 0$	A. 2 B. 1 C. 4 D. 3
44	Length of tangent from (a, 0) to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is:	B. c C. 2g + 2f -c D. None
45	Question Image	B. 0 C. 4 D. 7
46	y^2 = 4ax, is the standard equation of the:	A. Ellipse B. Parabola C. Hyperbola D. None of these
47	If the focus lies on the x-axis with coordinates $F(a, 0)$ and directrix of the parabola is = - a then the equation of parabola is:	A. x ² = 4ay B. y ² = 4ax Cx ² = 4ay Dy ² = 4ax
48	The conic is a parabola, if:	A. e = 1 B. e > 1 C. 0 < e < 1 D. e = 0
49	The directrix of the parabola x^2 = 4ay is:	A. x = a B. x = -a C. y = a D. y = -a
50	If the focus lies on the y - axis with coordinates $F(0, a)$ and directrix of the parabola is y = -a, then the equation of parabola is:	A. x ² = 4ay Bx ² = 4ay Cy ² = 4ax D. y ² = 4ax
51	The number e denotes the of the conic:	A. Directrix B. Vertex C. Focus D. Eccentricity
52	A line segment joining two distinct points on a parabola is called a of the parabola:	A. Chord B. Vertex C. Focus D. Directrix

53	A chord passing through the focus of a parabola is called a of the parabola:	A. Directrix B. Latus rectum C. Focus D. Focal chord
54	The graph of the the parabola x^2 = 4ay lies in quadrant:	A. I and II B. III and IV C. II and III D. I and III
55	The parabola $y^2 = 4ax$ lies in quadrants:	A. I and II B. III and IV C. II and III D. I and IV
56	The graph of the parabola x^2 = -4ay lies in quadrants:	A. I and II B. III and IV C. II and III D. I and III
57	The graph of the parabola y^2 = -4ax lies in quadrants:	A. I and II B. III and IV C. II and III D. I and III
58	If the equation of the parabola is $y^2 = 4ax$, then opening of the parabola is to the right of the:	A. x-axis B. y = x C. y-axis D. x + y =0
59	If the equation of the parabola is $x^2 = 4ay$, then opening of the parabola is to of the x-axis:	A. Left B. Upward C. Right D. Downward
60	The opening of the parabola $y^2 = 4ax$ is to the of the:	A. Left B. Upward C. Right D. Downward
61	The opening of the parabola x^2 = 4ay is upward of the:	A. x - axis B. y = c C. y - axis D. x = y
62	The opening of the parabola y^2 = -4ax is to the left of the:	A. x-axis B. x = 1 C. y-axis D. x = 0
63	The opening of the parabola x ² = 16y is to of the x-axis:	A. Left B. Upward C. Right D. Downward
64	If the equation of the parabola is $y^2 = -4ax$, then opening of the parabola is to the of the y-axis:	A. Left B. Upward C. Right D. Downward
65	If the equation of the parabola x^2 = 4ay, then opening of the parabola is upward of the:	A. x-axis B. y-axis C. Major axis D. Minor axis
66	The graph of the parabola y^2 = -4ax is symmetric about:	A. x-axis B. y = x C. y-axis D. None of these
67	The graph of the parabola x^2 = -4ay is symmetric about:	A. x-axis B. major axis C. y-axis D. minor axis
68	The graph of the parabola y^2 = -4ax is symmetric about:	A. x-axis B. major axis C. y-axis D. minor axis
69	The focus of the parabola y ² =4ax is:	A. (-a , 0) B. (0, a) C. (0, -a) D. (a, 0)
70	The focus of the parabola y^2 =-4ax is:	A. (-a , 0) B. (0, a) C. (0, -a)

		D. (a, 0)
71	The focus of the parabola x^2 =-4ay is:	A. (-a , 0) B. (0, a) C. (0, -a) D. (a, 0)
72	The focus of the parabola $x^2 = 4ay$:	A. (0, a) B. (-a, 0) C. (0, -a) D. (a, 0)
73	The equ. of directrix of the parabola $y^2 = -4ax$ is:	A. x = a B. x = - a C. y = a D. y = -a
74	The directrix of the parabola $x^2 = -4ay$ is:	A. x = a B. x = -a C. y = a D. y = -a
75	The directrix of the parabola $y^2 = 4ax$ is:	A. x = a B. x = -a C. y = a D. y = - a
76	The vertex of the parabola x^2 = -4ay is:	A. (a, 0) B. (0, 0) C. (0, -a) D. (0, a)
77	The vertex of the parabola $y^2 = 4ax$ is:	A. (-a, 0) B. (a, 0) C. (0, -a) D. (0, 0)
78	The point where the axis meets the parabola is called of the parabola:	A. Directrix B. Vertex C. Focus D. Eccentricity
79	The vertex of the parabola y^2 = -4ax is:	A. (-a, 0) B. (a, 0) C. (0, -a) D. (0, 0)
80	The point of a parabola which is closest to the focus in the:	A. Directrix B. Vertex C. Focus D. Chord
81	The vertex of the parabola x^2 = 4ay is:	A. (-a, 0) B. (0, a) C. (0, -a) D. (0, 0)
82	The vertex of parabola $(x - 1)^2 = 8 (y + 2)$ is:	A. (1, -2) B. (0, 1) C. (-1, -2) D. (1, 2)
83	The axis of the parabola x^2 = 4ay is:	A. x = 0 B. x = -a C. y = 0 D. y = -a
84	The axis of the parabola y^2 = -4ax is:	A. x = a B. x = 0 C. y = a D. y = 0
85	The axis of the parabola $y^2 = 4ax$ is:	A. x = 0 B. x = a C. y = 0 D. y = a
86	The axis of the parabola x^2 = -4ay is:	A. x = a B. x = 0 C. y = a D. y = 0
87	Equation of axis of the parabola $x^2 = 4ay$ is:	A. x = 0 B. x = a C. y = 0 D. y = a
		A. x = a

88	The equi. of latus-rectum of the parabola $y^2 = -4ax$ is:	B. x = -a C. y = a D. y = -a
89	The length of the latus rectum of the parabola $y^2 = 4ax$ is:	A. a B. 4a C. 2a D. None of these
90	The equation of the latus-rectum of the parabola $y^2 = 4ax$ is:	A. x = a B. x = -a C. y = a D. y = -a
91	the focal chord perpendicular to the axis of the parabola is called of the parabola:	A. DirectrixB. Latus rectumC. FocusD. Focal chord
92	The number e denotes the of the conic:	A. Directrix B. Vertex C. Focus D. Eccentricity
93	The conic is an ellipse, if:	A. e = 1 B. e > 1 C. 0 < e < 1 D. e = 0
94	Question Image	A. 4a B. 2a C. 4b D. 2b
95	Question Image	A. x = 0 B. y = -a C. y = 0 D. y = -a
96	Question Image	A. a B. 2b C. b D. 2a
97	In the case of translation of axes which formula is true:	A. x = X - h B. x = X + h C. x + X = h D. None
98	In the case of rotation of axes which formula is true:	
99	Question Image	A. Ellipse B. Parabola C. Hyperbola D. Circle
100	Question Image	A. Circle B. Parabola C. Hyperbola D. Ellipse