11th Class FA Mathematics Chapter 9 Online Test | Sr | Questions | Answers Choice | |----------------------|---|---| | 1 | The system of measurement in which the angle is measured in degrees, and its sub-units, minutes and seconds is called the: | A. circular system B. sexagesimal system C. decimal system D. degree system | | 2 | In circular system the angle is measured in: | A. radians B. degrees C. degrees, minutes D. degrees, seconds | | 3 | The area of a sector of a circular region of radius r with length of the arc of the sector equal to s is: | A. r⊖
B. rs | | 4 | In a circle of radius r, an arc of length kr will subtend in angle of radians at the center: | A. s
B. k
C. r
D. Θ | | 5 | If s denotes the length of the arc intercepted on a circle of radius r by a central angle of $\boldsymbol{\alpha}$ radians, then: | A. $s = r\alpha$
B. $s = r + \alpha$
D. none of these | | 6 | The direction of an angle Θ is determined by its: | A. value B. magnitude C. ratio D. sign | | 7 | The quadrant of an angle Θ is determined by its: | A. sign B. value C. ratio D. magnitude | | 8 | The angle between 0° and 360° and co-terminal with - 620° is: | A. 100°
B. 200°
C. 300°
D. 320° | | 9 | - 72° =: | D. none of these | | 10 | Question Image | | | 11 | Question Image | | | 12 | | | | | The number of radius in the angle subtended by an arc of a circle at the center = | A. radius × arc
B. radius - arc | | 13 | The number of radius in the angle subtended by an arc of a circle at the center = To convert any angle in degrees into radians, we multiply the measure by: | | | 13
14 | | | | | To convert any angle in degrees into radians, we multiply the measure by: | | | 14 | To convert any angle in degrees into radians, we multiply the measure by: To convert any angle in radians into degrees, we multiply the measure by: | B. radius - arc C. 180° | | 14
15 | To convert any angle in degrees into radians, we multiply the measure by: To convert any angle in radians into degrees, we multiply the measure by: 1 radian is equal to: | B. radius - arc C. 180° | | 14
15
16 | To convert any angle in degrees into radians, we multiply the measure by: To convert any angle in radians into degrees, we multiply the measure by: 1 radian is equal to: 1° is equal to: | B. radius - arc C. 180° D. none of these | | 14
15
16
17 | To convert any angle in degrees into radians, we multiply the measure by: To convert any angle in radians into degrees, we multiply the measure by: 1 radian is equal to: 1° is equal to: 180° =: | B. radius - arc C. 180° D. none of these D. π radians A. 30° B. 45° C. 60° | | 14
15
16
17 | To convert any angle in degrees into radians, we multiply the measure by: To convert any angle in radians into degrees, we multiply the measure by: 1 radian is equal to: 1° is equal to: 180° =: Question Image | B. radius - arc C. 180° D. none of these D. π radians A. 30° B. 45° C. 60° D. 75° A. I B. II C. III | | 21 | If $\sin \alpha < 0$ and $\cos \alpha > 0$, then α lies in: | B. II
C. III
D. IV | |----|---|--| | 22 | If $\sin\Theta$ <0, $\cos\Theta$ <0 then the terminal arm of the angle lies in quadrant: | A. I
B. II
C. III
D. IV | | 23 | In a triangle if $\alpha > 45^\circ, \beta > 30^\circ$ then Γ cannot be: | A. 90°
B. 100°
C. 120°
D. 10° | | 24 | Which one is a quadrant angle ? | A. 60°
B. 180°
C. 120°
D. 30° | | 25 | Which one is not a quadrant angle ? | A. 0°
B. 90°
C. 280°
D. 270° | | 26 | If the initial side of an angle is the positive x-axis and the vertex is at the origin, the angle is said to be in the: | A. initial position B. finalposition C. normalposition D. standardposition | | 27 | $\cos^4\Theta$ - $\sin^4\Theta$ = | A. sin 20
B. cos 20
C. tan 20
D. sec 20 | | 28 | $(1 - \sin^2\Theta) (1 + \tan^2\Theta) =$ | A. 0
B. 1
C. Θ
D1 | | 29 | $(1 - \cos^2\Theta) (1 + \cot^2\Theta) =$ | A. tan ² Θ B. 0 C. 1 D1 | | 30 | If $\sin \Theta + \csc \Theta = 2$, then $\sin^2 \Theta + \csc^2 \Theta =$ | A. 2
B. 4
C. 0
D. 8 | | | | |