

11th Class FA Mathematics Chapter 8 Online Test

Sr	Questions	Answers Choice
1	n! stands for:	A. product of first natural numbers B. sum of n natural numbers C. product of n integers D. none of these
2	For a positive integer n:	A. $(n+1)! = (n+1)n!$ B. $(n+1)! = (n+1)(n-1)!$ C. $n! = n(n+1)!$ D. none of these
3	The factorial of positive integer is:	A. rational no. B. positive integer C. real no. D. none
4	No. of selection of n different things out of n is:	A. 1 B. n C. n! D. none
5	In how many ways two places can be filled by n objects:	A. n(n-1) B. 2! C. n(n+1) D. None
6	No. of arrangements of the letters of the word plane taking all letters at a time:	A. 5 B. 1 D. none
7	No. of signals made by 5 flags of different colors using 3 flags at a time is:	A. 60 B. 15 C. 10 D. None
8	No. of signals made by 4 flags of different colors using 2 flags at a time:	A. 6 B. 12 C. 60 D. none
9	Number of digits multiple of 5 made from the digits 2, 3, 5, 7, 9 is:	A. 5 B. 24 C. 20 D. none
10	How many different number can be formed by taking 4 out of the six digits 1, 2, 3, 4, 5, 6:	A. 360 B. 120 C. 366 D. none of these
11	Numbers are formed by using all the digits 1, 2, 3, 4, 5, 6 on digit being repeated, then the numbers which are divisible by 5 are:	A. 110 B. 120 C. 122 D. 124
12	If ⁿ P ₂ = 30 then n = :	A. 5 B. 6 C. 2 D. 3
13	No. of arrangements can be made of 4 letters a, b, c, d taken 2 at a time?	A. 8 B. 12 C. 10 D. 14
		A. 21160 B. 20160
14	No. of arrangements of the letters of the word PAKISTAN can be made, taken all together ?	C. 20170 D. 20016
15	No. of arrangements of the letters of the word PAKPATTAN can be made, taken all together ?	A. 15130 B. 15120 C. 1512 D. none of these

16	No. of triangles can be formed by joining the vertices of the polygon having 12 sides?	A. 202 B. 220 C. 110 D. none of these
17	No. of triangles can be formed by joining the vertices of the polygon having 5 sides?	A. 10 B. 15 C. 20 D. none of these
18	The number of diagonals of a polygon with n sides is:	D. none of these
19	No. of diagonals can be formed by joining the vertices of the polygon having 5 sides?	A. 5 B. 15 C. 51 D. 10
20	No. of diagonals can be formed by joining the vertices of the polygon having 12 sides?	A. 70 B. 54 C. 70 D. 73
21	A key ring is an example of:	A. permutation B. circulation permutation C. combination D. none
22	Number of ways of arranging 5 keys in a circular ring is:	A. 12 B. 24 C. 6 D. 5
23	No. of necklaces can be made from 7 beads of different colors ?	A. 360 B. 120 C. 60 D. 70
24	The number of ways in which fiver persons can sit at a round table is:	A. 4! B. 5! D. none of these
25	The value of ⁵ C ₂ is:	A. 1 B. 10 C. 20 D. 30
26	$^{n}C_{4}$ = $^{n}C_{8}$ then n = :	A. 4 B. 12 C. 8 D. 6
27	If S is a sample space and event E is S then P(E) is:	A. 0 B. 1 C. >1 D. none
		A. 0
28	Question Image	B1
		C. >1
		C. >1 D. none
29	Probability of a certain event is:	
29	Probability of a certain event is: The probability that a number selected from the numbers 1, 2, 3, 4, 5,, 16 is a prime number is:	D. none A. 0 B. 1 C. >1 D. ∞
	The probability that a number selected from the numbers 1, 2, 3, 4, 5,, 16 is a prime	D. none A. 0 B. 1 C. >1
30	The probability that a number selected from the numbers 1, 2, 3, 4, 5,, 16 is a prime number is:	D. none A. 0 B. 1 C. >1 D. ∞ A. 5, 6
30	The probability that a number selected from the numbers 1, 2, 3, 4, 5,, 16 is a prime number is: A die is rolled. The probability that the dots on the top are greater than 4 is:	D. none A. 0 B. 1 C. >1 D. ∞ A. 5, 6 D. 1 A. 0 B. 1 C1
30 31 32	The probability that a number selected from the numbers 1, 2, 3, 4, 5,, 16 is a prime number is: A die is rolled. The probability that the dots on the top are greater than 4 is: Probability of an impossible event is:	D. none A. 0 B. 1 C. >1 D. ∞ A. 5, 6 D. 1 A. 0 B. 1 C1 D. ∞ A. 1
30 31 32 33	The probability that a number selected from the numbers 1, 2, 3, 4, 5,, 16 is a prime number is: A die is rolled. The probability that the dots on the top are greater than 4 is: Probability of an impossible event is: A dice is thrown. The probability to get an odd number is;	D. none A. 0 B. 1 C. >1 D. ∞ A. 5, 6 D. 1 A. 0 B. 1 C1 D. ∞ A. 1 D. none of these A. 1

36	probability that the ticket drawn bears a number which is a multiple of 3?	D. none of these
37	In a simultaneous throw of two dice, The probability of getting a total of 7 is:	
38	In a simultaneous throw of two dice, The probability of getting sum 3 or 11 is:	D. none
39	A dice is rolled, the probability of getting a number which is even or greater than 4 is:	D. none of these
40	One card is drawn at random from a pack of 52 cards. The probability that the card drawn a king is:	D. none of these
41	Question Image	
42	If a statement $P(n)$ is true for $n=1$ and truth of $P(n)$ for $n=k$ implies the truth of $P(n)$ for $n=k+1$, then $P(n)$ is true for all:	A. integers n B. real numbers n C. positive real numbers n D. positive integers n
43	Number of terms in the expansion of $(a+b)^n$ is:	A. n B. n+1 C. n-1 D. none of these
44	Number of terms in the expansion of $(x+y)^6$ is:	A. 7 B. 6 C. 2 D. 8
45	If n is a positive integer, then the binomial co-efficient equidistant form the beginning and the end in the expansion of $(x+a)^n$ are:	A. same B. not same C. additive inverse of each other D. none of these
46	The middle term in the expansion of $(a+b)^{20}$ is;	A. 10 th term B. 11 th term C. 12 th term D. 13 th term
47	The middle term of (x-y) ¹⁸ is:	A. 9th B. 10th C. 11th D. none of these
48	The middle terms of $(x+y)^{23}$ are:	A. T ₁₀ ,T ₁₁ B. T ₁₁ ,T ₁₂ C. T ₁₂ ,T ₁₃ D. none of these
49	Question Image	A. T ₆ B. T ₇ C. T ₈ D. T ₅
50	The middle term in the expansion of $(1+x)^{1/2}$ is:	A. T ₂ B. T ₃ C. does not exist D. none of these
51	Question Image	A. 2x B. x ² C. 1 D. none of these
52	In binomial expansion of $(a+b)^n$, n is positive integer the sum of odd coefficients equals:	D. none of these
53	In binomial expansion of (a+b)n, n is positive integer the sum of even coefficients equals:	D. none of these
54	In binomial expansion (a+b) ⁿ , n is positive integer the sum of coefficients equals:	D. none of these