

ECAT Pre General Science Physics Chapter 7 Oscillations Online Test

Sr	Questions	Answers Choice
1	SHM is type of motion	A. Vibratory B. Linear C. Circular D. None
2	Which of the following forces is responsible for SHM	A. Applied force B. Restoring force C. Fractional force D. Elastic force
3	Which of the following is an example of SHM(in ideal situations)	A. Motion of simple pendulum B. Motion of horizontal spring man system C. Motion of violin string D. All of these
4	Acceleration of body executing SHM is always directed towards	A. Extreme position B. Mean position C. Along the direction of motion D. None
5	Vibratory motion is always under	A. Applied force B. Restoring force C. Periodic force D. Gravitational force
6	In vibrational motion(SHM)	A. P.E remains conserved B. Average K.E remain constant C. Neither P.E nor K.E remains constant D. Total energy remains constant
7	The acceleration of body executing SHM is directly proportional to	A. Applied force B. Amplitude C. Displacement D. Frictional force
8	The wave form of SHM is	A. Pulsed wave B. Square wave C. Triangular waved D. Sine wave
9	The maximum distance of body from mean position when body is executing SHM is called	A. Time period B. Displacement C. Amplitude D. Frequency
10	The S.I unit of frequency is	A. Vibrations s ⁻² B. Ms ⁻¹ C. Hertz D. s ⁻¹
11	The displacement of body executing SHM is	A. x _o coswt B. x _o sinwt C. x _o sin ² wt D. Both A, B
12	A particle moving uniformly along circle its projection along diameter performs	A. Linear motion B. Projectile motion C. SHM D. Rotatory motion
13	Which of the following quantity for particle executing SHM is non-zero at mean position	A. Force B. Acceleration C. Velocity D. Displacement
14	A particle executes SHM with frequency. The frequency with which its K.E oscillates is	A. f/2 B. 2f C. f D. 4f
15	Velocity of particle executing SHM will be maximum at	A. Extreme position B. Mean position C. b/w mean and extreme

16	If time period of a pendulum is doubled by increasing its length, then its frequency will	A. Also be doubled B. Become half C. Become one fourth D. Becomes four times
17	The unit of spring constant is	A. J-sec B. Metre C. Nm ⁻¹ D. None of these
18	Which one of the following is an example of SHM	A. Motion in a plane B. Motion in a swing C. Motion in a car D. None of these
19	The SI unit of spring constant is identical with that of	A. Force B. Surface tension C. Pressure D. Loudness
20	The restoring force is and opposite tot he applied force within	A. Equal, Elastic limit B. Different, The walls of the laboratory C. Different, Elastic limit D. None of these
21	When a body is vibrating, the displacement from mean position	A. Increases with time B. Decreases with time C. Changes with time D. None of these
22	The graph showing the variation of displacement with time is a	A. Sine curve B. Straight line C. Parabola D. None of these
23	Amplitude in SHM is equivalent to in circular motion	A. Diameter B. Radius C. Circumference D. None of these
24	The body oscillates due to accelerates and overshoots the rest position due to	A. Applied force, Inertia B. Restoring force, Friction C. Frictional force, Inertia D. Restoring force, Inertia
25	When quarter of a circle is completed, the phase of vibration is:	A. 90 ° B. 180

D. None

		D. 2.5 sec
28	The time period of a simple pendulum is independent of its:	A. Length B. Mass C. Value of g D. Both A and B
29	The string of a simple pendulum should be:	A. Heavy B. Extensible C. In-extensible D. None of these
30	Second's pendulum is the pendulum whose time period is:	A. 1 second B. 2 second C. 3 second D. None of these
31	An object undergoes SHM. Its maximum equilibrium positions:	A. Maximum B. Half of its maximum value C. Zero D. None
32	Free oscillations are always produced by:	A. An applied force B. Gravitational force C. Restoring force and inertia D. Inertia only
33	If the waves produced in a microwave oven are of wave-length 12 cm, then their frequency will be:	A. 2500 MHz B. 0.25 MHz C. 2500 KHz D. None of these
34	To and fro motion of a body is about its mean position is known as:	A. Translatory motion B. Vibratory motion C. Rotatory motion D. None of these
35	The unit of spring constant is:	A. J-sec B. Metre C. Nm ⁻¹ D. None of these
36	Which one of the following is an example of SHM:	A. Motion in a plane B. Motion in a swing C. Motion in a car D. None of these
37	The SI unit of spring constant is identical with that of:	A. Force B. Surface tension C. Pressure D. Loudness
38	The restoring force is amd opposite to the applied force within:	A. Equal, elastic limit B. Different, the walls of the laboratory C. Different, elastic limit D. None of these
39	When a body is vibrating, the displacement from mean position:	A. Increases with time B. Decreases with time C. Changes with time D. None of these
40	The graph showing the variation of displacement with time is a:	A. Sine curve B. Straight line C. Parabola D. None of these
41	Amplitude in SHM is equivalent to in circular motion:	A. Diameter B. Radius C. Circumference D. None of these
42	The body oscillates due to accelerates and overshoots the rest position due to:	A. Applied force , inertia B. Restoring force, friction C. Frictional force, inertia D. Restoring force, inertia
		A. 90

sans-serif; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-clip: initial;">° B. 180<span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, sans-serif; background-image: initial;"

43	When quarter of a cycle is completed, the phase of vibration is:	background-position: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-origin: initial; background-dip: initial; ">° C. 45 ° D. 360 °
44	The time taken to complete one vibration is called:	A. Frequency B. Amplitude C. Time D. Time period
45	A particle is moving along a circular path with uniform speed. Its projection will executealong theof the circle:	A. Circular motion, circumference B. Vibrator, chord C. SHM, diameter D. SHM, circumference
46	If a mass of 10 gm is suspended from a spring of $k = 9.8 \text{ Nm}^{-1}$, then the extension will be:	A. 1 cm B. 1 m C. 10 mm D. None of these
47	If a force of 0.05 N produces an elongation of 20 mm in string, then its spring constant will be:	A. 250 N m ⁻¹ B. 25 N m ⁻¹ C. 2.5 N m ⁻¹ D. None of these
48	The number of vibrations in two seconds can be expressed asif frequency of vibration is f.	A. f B. 2 f C. 3 f D. 1/2 f
49	In SHM, there is always a constant ratio between displacement if body and its:	A. Velocity B. Period C. Mass D. Acceleration
50	If a given spring of spring constant k is cut into two indentical segments, the spring constant of each segment is:	A. k/2 B. 2 k C. 4 k D. None of these
51	A body with frequency would complete one vibration in:	A. f seconds B. 1/f seconds C. 1 second D. f ² second
52	A spring of constant $k = 0.4 \text{ N m}^{-1}$ is to be extended through 10 cm at a place where $g = 10 \text{ m sec}^{-2}$. The mass to be suspended should be:	A. 4 gms B. 0.4 gm C. 40 gms D. None of these
53	To and from motion of a body about its mean position is known as:	A. Translatory motion B. Vibratory motion C. Rotatory motion D. None of these
54	When a mass attached to a spring begins to move left or right from the equilibrium position, its P.E.:	A. Increases B. Decreases C. Remains constant D. None of these
55	The restoring force is and opposite to the applied force within,:	A. Equal, elastic limit B. Different, the walls of the laboratory C. Different, elastic limit D. None of these
56	Amplitude in SHM is equivalent to in circular motion:	A. Diameter B. Radius C. Circumference D. None of these
	The hady conflicted due to appellators and everyheats the rest position due	A. Applied force, inertial

57	The body oscillates due to accelerates and overshoots the rest position due to,:	B. Restoring force, inction C. Frictional force, inertial D. Restoring force, inertial
58	When quarter of a circle is completed, phase of vibration is:	A. 90

ья	In Shivi, the acceleration is when velocity is:	C. Zero, zero D. Zero, greatest
70	An angle of 180° in circular motion is equivalent to in SHM.	A. Half the vibration B. One vibration C. 3/4th of a vibration D. None of these
71	An oscillating body oscillates due to:	A. Applied force B. Restoring force C. Frictional force D. None of these
72	Amplitude is the displacement of the vibrating body from:	A. One extreme position to the other extreme position B. Mean position any one extreme position C. Both A and B are correct D. None of these
73	The restoring force is always directed towards:	A. Rest position B. Equilibrium position C. Mean position D. All of them