

ECAT Pre General Science Mathematics Chapter 2 Set, Functions and Groups Online Test

Sr	Questions	Answers Choice
1	If a 1-1 correspondence can be established b/w two sets A and B, then they are called	A. Equal sets B. Equivalent sets C. Over lapping sets D. None of these
2	For any two sets A and, $A \subseteq B$ if	A. $x \in A \Rightarrow x \in B$ B. $x \notin A \Rightarrow x \notin B$ C. $x \in A \Rightarrow x \notin B$ D. None of these
3	If A is a subset of B and B contains at least one element which is not an element of A, then A is said to be	A. Improper subset of B B. Super set of B C. Proper subset of B D. None of these
4	{x x∈R∧x≠x} is a	A. Infinite set B. Null set C. Finite set D. None of these
5	The set $x \in N \land x-4=0$ in tabular form is	A. {-4} B. {0} C. {} D. None of these
6	The set which has no proper subset is	A. {0} B. {} C. { <i>ø</i> } D. None of these
7	If the intersection of two sets is non-empty, but either is a subset of other are called	A. Disjoint sets B. Over lapping C. Equal sets D. None of these
8	If A \cap B=B, then n(A \cap B) is equal to	A. n(a) B. n(a)+n(c) C. n(c) D. None of these
9	If B-A≠ ϕ , then n(B-A) is equal to	A. n(a)+n(c) B. n(c)-n(a) C. n(a)-n(c) D. None of these
10	The logic in which every statement is regarded as true or false and no other possibility is called	A. Aristotelian login B. Inductive logic C. Non-Aristotelian logic D. None of these
11	The contra positive of $p \to q$ is	A. $q \rightarrow p$ B. $\neg q \rightarrow \neg q$ C. $\neg p \rightarrow \neg q$ D. None of these
12	Onto function is also called	A. Binjective function B. Injective function C. Surjechive function D. None of these
13	If $f:A \rightarrow B$ is an injective function and second elements of no two of its ordered pairs are equal, then f is called	A. 1-1 and onto B. Bijective C. 1-1 and into D. None of these
14	Question Image	D. None of these
15	Question Image	A. Addition B. Subtraction C. Multiplication D. None of these
16	The geometrical representation of a linear function is	A. Circle B. Parabola C. Straight lie

		D. None of these
17	A monoid $(G, *)$ is said to be group if	A. have identity element B. is commutative C. have inverse of each element D. None of these
18	The set of natural is a semi group w.r.t	A. Addition B. Division C. Subtraction D. None of these
19	Question Image	D. None of these
20	The function whose range consists of just one element is called	A. One-One Function B. Identity Function C. Onto Function D. Constant Function
21	The set X is	A. Proper Subset of X B. Not A subset of X C. Improper Subset of X D. None of these
22	If A=B, then	A. $A \subseteq B$ and $B \subseteq A$ B. $A \subseteq B$ and $B \nsubseteq A$ C. $A \subseteq B$ and $B \subseteq A$ D. None of these
23	If B⊆ A, then complement of B in A is =	A. A-B B. A∩B C. B-A D. A∪B
24	(A∪B)∪C=	A. $A \cap B(B \cup C)$ B. $A \cup (B \cup C)$ C. $A \cup (B \cap C)$ D. None of these
25	A∪(A∪B)=	A. B B. A C. AUB D. None of these
26	For a set A, AUAc=	A. A B. ∅ C. Ac D. U
27	(A∩Bc)c=	A. $Ac \cup Bc$ B. $Ac \cup B$ C. $Ac \cap B$ D. None of these
28	A conjunction of two statement p and q is true only if	A. p is true B. q is true C. Both p and q are true D. both p and q are false
29	A disjunction of two statement p and q is true	A. p is false B. q is false C. Both p and q are false D. One of p and q is true
30	A conditional is regarded as false only when the antecedent is true and consequent is	A. True B. False C. Known D. Unknown
31	The negation of given number is a	A. Binary operation B. Unary operation C. Relation D. None of these
32	The extraction of cube root of a given number is a	A. Unary Operation B. Binary Operation C. Relation D. None of these
33	The identity element of a set X with respect to intersection in $P(x)$ is	A. X B. Does not exist C. ∅ D. None of these
34	Z is a group under	A. Subtraction B. Multiplication C. Addition D. None of these

35	Group of none-singular matrices under multiplication is	A. None-Abelian group B. Semi group C. Abelian group D. None of these
36	Question Image	A. a-b=ab B. ab=a C. a+b=ab
37	Question Image	A. A onto B B. both a & c C. A into B D. none of these
38	Power set of difference set N-W is	A. Empty set B. Infinite set C. Singleton set D. {0,∅}
39	Which conjunction is not true ?	
40	Which symbolic notation represent unary operation ?	A B. ∨ C. ∧ D. ⇔
41	Identity w.r.t intersection in a power set of any set is	A. ∅ B. Set itself C. Singleton set D. {0}
42	Under multiplication, solution set of is	A. Groupoid B. Abelian group C. Semi group D. All of these
43	If $z1 = 2 + 6i$ and $z2 = 3 + 7i$ then which expression defines the product of $z1$ and $z2$	A. 36 +(-32)i B36+32i C. 6+(-11)i D. 0, +(-12)i
44	Which of the following has the same value as i113	A. i B1 Ci D. 1
45	Z is the set of integers (Z.*) is a group with a * b = a +b +1, $a,b \in G$.then inverse of a is	Aa B. a +1 C1-a D. None of these
46	G = {e, a, b, c} is an Abelian group with e as identity element The order of the other elements are	A. 2,2,2 B. 3,3,3 C. 2,2,4 D. 2,3,4
47	For any set X, X∪X is	A. X B. X C. Φ D. Universal Set
	Given X,Y are any two sets such that number of elements in set X = 28, number of elements in	A. 4 B. 3
48	set Y = 28, and number of elements in set $X \cup Y$ = 54, then number of elements in set $X \cap Y$ =	C. 2 D. 1
49	Let A,B, and C be any sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$ then	A. $A \neq C$ B. $B = C$ C. $A = B$ D. $A \neq B$
50	The complement of set A relative to universal set U is the set	A. $\{x \mid x \in A \land x \in U\}$ B. $\{x \mid x \notin A \land x \in U\}$ C. $\{x \mid x \in A \text{ and } x \notin U\}$ D. A-U
51	The multiplicative inverse of x such that x = 0 is	Ax B. Does not exist C. 1/x D. ±1
52	Which of the following is the subset of all sets	A. Φ B. {1,2,3} C. {Φ} D. {0}
		A. Infinite set B. Singleton set

53	The set {{a,b}} is	C. Two points set D. None
54	The set of the first elements of the ordered pairs forming a relation is called its	A. Function on B B. Range C. Domain D. A into B
55	The set of complex numbers forms a group under the binary operation of	A. Addition B. none of these C. Division D. Subtraction
56	The multiplicative inverse of -1 in the set {1-,1} is	A. 1 B1 C. ±1 D. 0 E. Does not exist
57	The set {1,-1, i, -i} form a group under	A. Addition B. Multiplication C. Subtraction D. None
58	The set of all positive even integers is	A. Not a group B. A group w.r.t subtraction C. A group w.r.t division D. A group w.r.t multiplication
59	The statement that a group can have more than one identity elements is	A. True B. False C. Fallacious D. Some times true
60	The set Q	A. Forms a group under additionB. Does not form a groupC. Contains no additive indentityD. Contains no additive inverse
61	The set (Z,+) forms a group	A. Forms a group w.r.t addition B. Non commutative group w.r.t multiplication C. Forms a group w.r.t multiplication D. Doesn't form a group
62	For any set B,B∪B' is	A. Is set B B. Set B' C. Universal set
62 63	For any set $B, B \cup B'$ is If $A \subseteq B$ then $A \cup B$ is	B. Set B'
		B. Set B' C. Universal set A. A B. B C. A'
	If $A \subseteq B$ then $A \cup B$ is Given X.Y are any two sets such that number of	B. Set B' C. Universal set A. A B. B C. A' D. A ∩B A. 3
63	If $A \subseteq B$ then $A \cup B$ is Given X.Y are any two sets such that number of elements in X = 18, number of elements in set Y = 24,and number of elements in set X \cup Y	B. Set B' C. Universal set A. A B. B C. A' D. A ∩B A. 3 B. 1 C. 2
63 64	If $A \subseteq B$ then $A \cup B$ is Given XY are any two sets such that number of elements in X = 18, number of elements in set Y = 24,and number of elements in set XU Y =40,then number of elements in set xO Y = If $n(X) = 18$, $n(X \cap Y) = 7$, $n(X \cup Y) = 40$ then $n(Y)$	B. Set B' C. Universal set A. A B. B C. A' D. A ∩B A. 3 B. 1 C. 2 D. 4 A. 1 B. 12 C. 5
63 64	If $A \subseteq B$ then $A \cup B$ is Given XY are any two sets such that number of elements in X = 18, number of elements in set Y = 24, and number of elements in set X \cup Y = 40, then number of elements in set x \cap Y = If $n(X) = 18$, $n(X \cap Y) = 7$, $n(X \cup Y) = 40$ then $n(Y)$ = Let A,B and C be any sets such that $A \cup B =$	B. Set B' C. Universal set A. A B. B C. A' D. A \cap B A. 3 B. 1 C. 2 D. 4 A. 1 B. 12 C. 5 D. 29 A. A = B B. B = C C. A \neq C
63 64 65 66	If $A \subseteq B$ then $A \cup B$ is Given XY are any two sets such that number of elements in X = 18, number of elements in set Y = 24, and number of elements in set XU Y =40, then number of elements in set x \cap Y = If $n(X) = 18$, $n(X \cap Y) = 7$, $n(X \cup Y) = 40$ then $n(Y)$ = Let A,B and C be any sets such that $A \cup B =$ $A \cup C$ and $A \cap B = A \cap C$ then	B. Set B' C. Universal set A. A B. B C. A' D. A \cap B A. 3 B. 1 C. 2 D. 4 A. 1 B. 12 C. 5 D. 29 A. A = B B. B = C C. A \neq C D. A \neq B A. 1 B. 0 C. 2
63 64 65 66 67	If $A \subseteq B$ then $A \cup B$ is Given X.Y are any two sets such that number of elements in X = 18, number of elements in set Y = 24, and number of elements in set XU Y =40, then number of elements in set $x \cap Y =$ If $n(X) = 18$, $n(X \cap Y) = 7$, $n(X \cup Y) = 40$ then $n(Y)$ = Let A,B and C be any sets such that $A \cup B =$ $A \cup C$ and $A \cap B = A \cap C$ then If $x = 1/x$ for $x \in R$ then the value of x is The set {-1,1} is closed under the binary	B. Set B' C. Universal set A. A B. B C. A' D. A \cap B A. 3 B. 1 C. 2 D. 4 A. 1 B. 12 C. 5 D. 29 A. A = B B. B = C C. A \neq C D. A \neq B A. \pm 1 B. 0 C. 2 D. 4 A. 1 B. 12 C. 5 D. 29 A. A = B B. B = C C. A \neq C D. A \neq B A. \pm 1 B. 0 C. 2 D. 4 A. 1 B. 1 C. 5 D. 29 A. A = B B. B = C C. A \neq C D. A \neq B A. A ddition B. Multiplication C. Subtraction

71	The set { {a,b} } is	A. Infinite set B. Singleton set C. Two points set D. Empty set
72	(A ∩ B)c =	A. A \cap B B. (A \cup B)c C. Ac \cup Bc D. Φ
73	The set of the first elements of the orders pairs forming a relation is called its	A. Relation in B B. Range C. Domain D. Relation In A
74	A function in which the second elements of the order pairs are distinct is called	A. Onto function B. One-one function C. Identity function D. Inverse function
75	A function whose range is just one element is called	A. One-one function B. Constant function C. Onto function D. Identity function
76	The function $\{f(x,y) y = ax2 +bx +c\}$ is	A. One-one function B. Constant function C. Onto function D. Quadratic function
77	To each element of a group there corresponds inverse element	A. Two B. One C. No D. Three
78	The set of integer is	A. Finite group B. A group w.r.t addition C. A group w.r.t multiplication D. Not a group
79	The set $\{x + iy / x, y \in Q\}$ forms a group under the binary operation of	A. Addition B. Multiplication C. Division D. Both addition and multiplication
80	The set {-1,1} is	 A. Group under the multiplication B. Group under addition C. Does not form a group D. Contains no identity element
81	The set of complex numbers forms	A. Commutative group w.r.t addition B. Commutative group w.r.t multiplication C. Commutative group w.r.t division
		D. Non commutative group w.r.t addition
82	The set {1,-1,i,-i}	A. Form a group w.r.t addition B. Form a group w.r.t multiplication C. Does not form a group w.r.t multiplication D. Not closed under multiplication
82 83	The set {1,-1,i,-i} The set R isw.r.t subtraction	A. Form a group w.r.t addition B. Form a group w.r.t multiplication C. Does not form a group w.r.t multiplication
		 A. Form a group w.r.t addition B. Form a group w.r.t multiplication C. Does not form a group w.r.t multiplication D. Not closed under multiplication A. Not a group B. A group C. No conclusion drawn
83	The set R isw.r.t subtraction	 A. Form a group w.r.t addition B. Form a group w.r.t multiplication C. Does not form a group w.r.t multiplication D. Not closed under multiplication A. Not a group B. A group C. No conclusion drawn D. Non commutative group A. Addition B. Multiplication C. Division
83 84	The set R isw.r.t subtraction The set $\{Z \setminus \{0\}\}$ is group w.r.t Power set of X i.e P(X)under the binary	 A. Form a group w.r.t addition B. Form a group w.r.t multiplication C. Does not form a group w.r.t multiplication D. Not closed under multiplication A. Not a group B. A group C. No conclusion drawn D. Non commutative group A. Addition B. Multiplication C. Division D. Subtraction A. Forms a group B. Does not form a group C. Has no identity element
83 84 85	The set R isw.r.t subtraction The set $\{Z \setminus \{0\}\}$ is group w.r.t Power set of X i.e P(X)under the binary operation of union U	 A. Form a group w.r.t addition B. Form a group w.r.t multiplication C. Does not form a group w.r.t multiplication D. Not closed under multiplication A. Not a group B. A group C. No conclusion drawn D. Non commutative group A. Addition B. Multiplication C. Division D. Subtraction A. Forms a group B. Does not form a group C. Has no identity element D. Infinite set although X is infinite A. Forms a group w.r.t multiplication C. Non commutative group w.r.t multiplication

89	Question Image	A. Natural numbers B. Whole numbers C. Integers D. Rational numbers
90	Question Image	A. Evert element of A is in B B. Every element of B is in A C. Every element of A is in B' D. Every element of A is in A
91	Let A and B be two sets. If every element of A is also an element of B then	
92	The set of natural numbers is a subset of	A. {1, 2, 3, 100} B. The set of whole numbers C. {2, 4, 6, 8,} D. None of these
93	The set of whole numbers is subset of	A. The set on integers B. The set of natural numbers C. {1, 3, 5, 7,} D. The set of prime numbers
94	The set of integers is a subset of	A. The set of natural numbersB. The set of whole numbersC. The set of prime numbersD. The set of rational numbers
95	The set of real numbers is a subset of	A. The set of natural numbersB. The set of rational numbersC. The set of integersD. The set of complex numbers
96	The set of rational numbers is subset of	A. The set of natural numbers B. The set of real numbers C. The set of integers D. The set of whole numbers
97	{1, 2, 3} is	A. an infinite set B. A finite set C. A singleton set D. Universal set
98	A = B if	D. A is equivalent to B
99	Question Image	A. An empty set B. Universal set C. A singleton set D. None of these
100	Question Image	A. A is proper subset of B B. A is an improper subset of B C. A is equivalent to B D. B is subset of A
101	Question Image	A. An empty set B. Universal set C. A singleton set D. None of these
102	Question Image	A. A finite set B. An infinite set C. An empty set D. None of these
103	The sets {1, 2, 4} and {4, 6, 8, 10} are	A. Equal sets B. Equivalent sets C. Disjoint sets D. Over lapping sets
104	A - B =	
105	Which of the following sets in infinite	 A. The set of students of your class B. The set of all schools in Pakistan C. The set of natural numbers between 3 and 10 D. The set of rational numbers between 3 and 10
106	Which of the following sets is finite	 A. The set of natural numbers between 3 and 10 B. The set of rational numbers between 3 and 10 C. The set of real numbers between 0 and 1 D. The set of rational numbers between 0 and 1
107	A set having only one element is called	A. An empty set B. Universal set C. A singleton set D. A power set
108	Question Image	

109	If $n(A) = n$ then $n(P(A))$ is	A. 2n B. n ² C. n/2 D. 2 ⁿ
110	What is the number of elements of the power set of {0, 1}	A. 1 B. 2 C. 3 D. 4
111	What is the number of elements of the power set of { }	A. 0 B. 1 C. 2 D. 3
112	Write down the power set of {9, 11}	
113	If A and B are two sets then intersection of A and B is denoted by	
114	Two sets A and B are said to be disjoint if	
115	Question Image	
116	Question Image	
117	Question Image	
_118 119	Question Image Question Image	
120	Question Image	
121	Question Image	
122	Question Image	
123	Question Image	
124	Question Image	A. A B. B C. A'B' D. B'A
125	Question Image	
126	Question Image	
127	Question Image	A. A B. A' C. U D. A A'
128	Question Image	B. A C. A' D. U
129	Question Image	A. A B. A' C. U D. U'
130	Question Image	A. A B. A' C. U D. None of these
131	Question Image	A. n(A) B. n(B) C. 0 D. 1
132	Question Image	A. A B. B C. U D. None of these
133	Question Image	A. A B. B C. U D. None of these
404	Question Image	A. A B. A'

134	Question image	C. U D. None of those
		D. None of these
135	A statement which is either true or false is called	A. Induction B. Deduction C. Propositicon D. Logic
136	If P is a proposition then its negative is denoted by	
137	If p and q are two statements then their conjunction is denoted by	
138	A conditional "if p then q" is denoted by	
139	If p and q are two statements then their biconditional 'p if q' is denoted by	
140	If we have a statement "if p then q" then q is called	A. Conclusion B. Implication C. Unknown D. Hypothesis
141	Question Image	A. Conclusion B. Implication C. Antecedent D. Hypothesis
142	Question Image	A. Biconditional B. Implication C. Antecedent D. Hypothesis
143	Question Image	
144	Question Image	
145	Question Image	
146	The number of subsets of a set having three elements is	A. 4 B. 6 C. 8 D. none of these
147	If A and B are two sets then any subset R of A \boldsymbol{x} B is called	A. relation on A B. relation on B C. relation from A to B D. relation from B to A
148	If A and B are two sets then any subset R of B \boldsymbol{x} A is called	A. relation on A B. relation on B C. relation from A to B D. relation from B to A
149	If A is a set then any subset R of A x A is called	A. relation on A B. relation on B C. relation from A to B D. relation from B to A
150	The set of first elements of the ordered pairs in a relation is called its	A. domain B. range C. relation D. function
151	Question Image	
152	Question Image	
153	Question Image	
154	Question Image	
155	Question Image	
156	Question Image	A. a constant function B. linear function C. quadratic funtion D. none of these
157	The graph of a linear function is	A. a circle B. triangle C. a straight line D. none of these
		A. square root function B. identity function

158	Question Image	C. linear function D. quadratic function
159	Question Image	D. none of these
160	The negation of a number	A. a relation B. a function C. unary operation D. binary operation
161	Question Image	D. none of these
162	Question Image	
163	Z is the set of integers, (z, *) is a group with a * $b = a + b + 1$, a, b \bigcirc G. then inverse of a is	Aa B. a + 1 C2 -a D. None of these
164	G = {e, a, b, c} is an Abelian group with e as identity element. The order of the other elements are	A. 2, 2, 2 B. 3, 3, 3 C. 2, 2, 4 D. 2, 3, 4
165	Question Image	
166	Question Image	A. 4 B. 3 C. 2 D. 1
167	Question Image	A. A = C B. A = B C. B = C D. None of these
168	The complement of set A relative to universal set U is the set	
169	The multiplicative inverse of x such that x = 0 is	Ax B. does not exist C. 1/x D. 0
170	Multiplicative inverse of "1" is	A. 0 B1 C. 1 D. {0, 1}
171	In a school, there are 150 students. Out of these 80 students enrolled for mathematics class, 50 enrolled for English class, and 60 enrolled for Physics class. The students enrolled for English cannot any other class, but the students of mathematics and Physics can take two courses at a time. Find the number of students who have taken both physics and mathematics	A. 40 B. 30 C. 50 D. 20
172	Which of the following is the subset of all sets?	
173	The set {{a,b}} is	A. Infinite set B. Singleton set C. Two points set D. None
174	The set of the first elements of the ordered pairs forming a relation is called its	A. Function on B B. Range C. Domain D. A into B
175	The graph of a quadratic function is	A. Circle B. Ellipse C. Parabola D. Hexagon
176	The set of complex numbers forms a group under the binary operation of	A. Addition B. Multiplication C. Division D. Subtraction
177	The multiplicative inverse of -1 in the set $\{1-, 1\}$ is	A. 1 B1 C. 0 D. Does not exist
		A. Addition

А.	A	dc	liti	on	
-					

179 The set of all positive even integers is A. Not a group B. A group w.r.t. subtraction C. A group w.r.t. division D. A group w.r.t. multiplication	
180 The statement that a group can have more than one identity elements is A. True 0. False B. False C. Fallacious D. Some times true	
181 The set (Q, .) A. Forms a group B. Does not form a group C. Contains no additive identity D. Contains no additive inverse	
182The set (Z, +) forms a groupA. Forms a group w.r.t. additionB. Non commutative group w.r.t. multiplicationC. Forms a group w.r.t multiplicationD. Doesn't form a group	
183 For any set B, BUB' is A. Is set B B. Set B' C. Universal set D. None of these D. None of these	
184 Question Image A. A B. B C. A' D. None of these	
185 In set builder notation the set {0, 1, 2,,100} can be written as	
186Question ImageA. 3B. 1C. 2D. 4	
A. 1 B. 12 C. 5 D. 29	
188Question ImageA. A = BB. B = CC. A = CD. None of these	
189 The total number of subsets that can be formed out of the set {a, b, c} is A. 1 B. 4 B. 4 D. 12	
190 Question Image	
191 The set {-1, 1} is closed under the binary operation of A. Addition B. Multiplication C. Subtraction D. Division D. Division	
192Multiplicative inverse of "1" isA. +- 1 B. 0 C. 1 D. None of these	
193 If a set S contains "n" elements then P (S) has number of elements A. 2 ⁿ 193 D. n ²	
194Additive inverse of -a -b isA. a Ba + b C. a - b D. a + b	
A. 1/x195Question ImageBxC. 2xD. 0.5 x	
196 Question Image Ax B. Infinite set C. {-4, 4} D. None of these	

197	The identity elements with respect to subtraction is	A. 0 B. 1 C1 D. Does not exist
198	Multiplicative inverse of 0 is	A. 0 B. 1 C. +-1 D. Does not exist
199	Decimal part of irrational number is	 A. Terminating B. Repeating only C. Neither repeating nor terminating D. Repeating and terminating
200	In a country, 55% of the male population has houses in cities while 30% have houses both in cities and in village. Find the percentage of the population that has house only in villages.	A. 45 B. 30 C. 25 D. 50
201	arPhiset is the of all sets?	A. Subset B. Union C. Universal D. Intersection
202	Question Image	A. Singleton set B. A set with two points C. Empty set D. None of these
203	The set { {a, b} } is	A. Infinite set B. Singleton set C. Two points set D. Empty set
204	Question Image	
205	If $\#n = (n-5)^2 + 5$, then find $\#3 \times \#4$.	A. 54 B. 12 C. 4 D. 9
206	The set of the first elements of the orders pairs forming a relations is called its	A. Relation in B B. Range C. Domain D. Relation in A
207	A function whose range is just one elements is called	A. One-one function B. Constant function C. Onto function D. Identity function
208	The graph of a quadratic function is	A. Circle B. Straight line C. Parabola D. Triangle
209	The function $f((x, y) y = ax^2 + bx + c)$ is	A. One-one function B. Constant function C. Onto function D. Quadratic function
210	To each element of a group there corresponds inverse element	A. Two B. One C. No D. Three
211	The set of integer is	A. Finite group B. A group w.r.t addition C. A group w.r.t multiplication D. Not a group
212	Question Image	A. Addition B. Multiplication C. Division D. Both addition and multiplication
213	The set {-1, 1} is	 A. Group under the multiplication B. Group under addition C. Does not form a group D. Contains no identity element
214	The multiplicative inverse of -1 in the set {1-, 1} is	A. 1 B1 C. +-1 D. 0
		A. Commutative group w.r.t addition

215	The set of complex numbers forms	B. Commutative group w.r.t multiplication C. Commutative group w.r.t division D. Non commutative group w.r.t addition
216	The set {1, -1, i, -i}	 A. Form a group w.r.t addition B. Form a group w.r.t multiplication C. Does not form a group w.r.t multiplication D. Not closed under multiplication
217	The set R isw.r.t subtraction	A. Not a group B. A group C. No conclusion drawn D. Non commutative group
218	The set {Z\{0}} is group w.r.t	A. Addition B. Multiplication C. Division D. Subtraction
219	The statement that a group can have more than one identity elements is	A. True B. False C. Ambiguous D. Some times true
220	Power set of X i.e P(X) under the binary operation of union U	A. Forms a groupB. Does not form a groupC. Has no identity elementD. Infinite set although X is infinite
221	Which of the following statement is true?	A. A set is a collection of non-empty objectB. A set is a collection of only numbersC. a set is any collection of thingsD. a set is well-defined collection of objects
222	If T = {2,4,6,8,10,12}, then	 A. T = (First six natural numbers) B. T = (First six odd numbers) C. T = (First six real numbers) D. T = (First six even numbers)
223	Which of the following is the definition of singleton	A. The objects in a set B. A set having no element C. A set having no subset D. None of these
224	If S = {3,6,9,12}, then	 A. S = Four multiples of 3 B. S = Set of even numbers C. S = Set of prime numbers D. S = All multiples of 3
225	If P = {x/x = p/q where $p,q \in Z$ and $q \neq 0$ }, then P is the set of	A. Irrational numbers B. Even numbers C. Rational numbers D. Whole numbers
226	A = B iff	A. All elements of A also the elements of BB. A and B should be singletonC. A and B have the same number of elementsD. If both have the same element
227	The set of months in a year beginning with S.	A. {September, October, November} B. Singleton set C. Null set D. Empty set
228	P∉ A means	A. <i>P</i> is subset of A B. <i>P</i> is an element of A C. <i>P does not belongs to A</i> D. A does not element of <i>P</i>
229	If there is one-one correspondence between A and B, then we write.	A. $A = B$ B. $A \subseteq B$ C. $A \supseteq B$ D. $A \simeq B$
230	if A = $(x/x \in \mathbb{Q} \land 0 < x < 1)$, the A is	A. Infinite set B. Finite set C. Set of rational numbers D. Set of real numbers
231	Empty set is	A. Not subset of every set B. Finite set C. Infinite set D. Not the member of real numbers
232	Every set is an improper subset of	A. Empty set B. Equivalent set C. Itself D. Singleton set
		A F

233	{0} is a	A. Empty set B. Singleton set C. Zero set D. Null Set
234	Z is a	A. Infinite set B. Finite set C. Singleton set D. Set of all integers
235	If A = {x/x is a positive integer and 4≤x<23}, then A=	A. {1,2,3,4,5,6,7} B. {4,5,622} C. {1,2,3,23} D. {1,2,3,4,5}
236	If C={p/p < 18, p is a prime number}, then C =	A. {2,3,4,17} B. {2,4,6,816} C. {1,3,5,7,9,11,13,15,17} D. {3,6,9,12,15}
237	If a = {2m/2m < 9 ,m€ p} , the (n A) =	A. {2,3,4,5,6,7,8} B. {2,4,6,816} C. { 4, 6} D. {2,3,5,7}
238	If B ={x/x€ Z ^ - 3 < x < 6}, then n (B) =	A. 5 B. {-3,-2,-1,0,1,2,3,4,5,6} C. 8 D. 9
239	If 0 = {1,3,5}, then n (0) =	A. Infinite B. Even numbers C. odd integers D. 99
240	If A = {2m/m ³ = 8 , m€ Z} then A =	A. {1,8,27} B. {4} C. (2,4,6} D. {2,16,54}
241	If $A \subseteq B$, and B is a finite set, then	A. n (a) & lt; n(B) B. n(B)& lt;(A) C. n(A) \leq n (B) D. n(A) \geq n(B)
242	The set of even prime numbers is	A. (2,4,6,8,10} B. {2,4,6,8,10,12} C. {1,3,5,7,9} D. {2}
		A. {a} B. [if gte msEquation 12] <m:omathpara><m:omath><i style='mso-bidi-font-style:normal'><span style='font-family:"Cambria Math",serif; mso-
bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin'><m:r>@</m:r> </i </m:omath></m:omathpara> [endif] [if !msEquation] <span style="line-
height: 107%;"><!--[if gte vml 1]--><v:shapetype <br="" id="_x0000_t75">coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f"><v:stroke joinstyle="miter"/> <v:formulas> <v:f eqn="filled=" f"="" stroked="f"><v:f eqn="sum @0 1 0"/> <v:f eqn="sum 0 0 @1"></v:f> <v:f eqn="sum @0 1 0"/> <v:f eqn="prod @3 21600 pixelHeight"></v:f> <v:f eqn="sum @0 0 1"/> <v:f eqn="prod @6 1 2"></v:f> <v:f eqn="prod @7 21600</td></tr><tr><td>243</td><td>If D = {a} , the P(D) =</td><td><pre>pixelWidth"></v:f> <v:f eqn="sum @8 21600 0"></v:f> <v:f eqn="prod @7 21600 pixelHeight"></v:f> <v:f eqn="sum @10 21600 0"></v:f> </v:f </v:f </v:f </v:f></v:formulas> <v:path gradientshapeok="t" o:connecttype="rect" o:extrusionok="f"></v:path> <o:lock aspectratio="t" v:ext="edit"></o:lock> </v:stroke </v:shapetype><v:shape id="_v0000_i1025" style="width:6.75pt; height:14.25pt" type="#_x0000_t75"> <v:imagedata chromakey="white" o:title="" src="file:///C:/Users/Softsol/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png"></v:imagedata> </v:shape><!--[endif]--><!--[if !vml]-->>e![endif]><!--[endif]--><!--[endif]--><!--[endif]--> [endif] [endif] [endif] [endif]
244	If E = { } , then P(E)	A. ∅ B. {} C. {(2),(4),(6)} D. (∅)
245	The number of subset of {0} is	A. 1 B. 2 C. 3 D. None
246	The many subset can be formed from the set {a,b,c,d}	A. 8 B. 4 C. 12

		D. 16
247	The number of proper subset of A ={a.b.c.d} is	A. 3 B. 6 C. 8 D. 15
248	The number of subsets of B = {1,2,3,4,5}	A. 10 B. 32 C. 16 D. 5
249	0 is a symbol of	A. singleton set B. Empty set C. Equivalent set D. Infinite set
250	Every subset of a finite set is	A. Disjoint B. Null C. Finite D. Infinite