

ECAT Physics Chapter 19 Dawn of Modern Physics Online Test

Sr	Questions	Answers Choice
1	The concept of direction and position are purely	A. absolute B. relative C. absolute or relative D. none of these
2	Absolute motion cannot be detected	A. in its own frame of references B. in a different frame of references C. both in its frame and different frame of references D. none of these
3	An intertial frame of reference is a frame of reference which is	A. at rest B. moving with uniform velocity C. either at rest or moving with uniform velocity D. none of these
4	Which of the following is not an example of intertial frame	A. a body placed on the surface of earth B. a body placed in a car moving with uniform velocity C. a body placed in a car moving with same acceleration D. none of these
5	An inertial frame is that frame in which	A. a>0 B. a=0 C. a<0 D. none of these
6	A non-inertial frame of reference is one, in which	A. law of inertial is valid B. all laws of physics are the same in all frames C. a>0 or a<0 D. a=0
7	The special theory of relativity treats problems invoving	A. inertial frame of references B. accelerating frame of references C. both of these D. none of these
8	The general theory of relativity treats problems involving	A. inertial frame of references B. accelerating frame of references C. both of these D. none of these
9	The special theory of relativity is based on the	A. one postulate B. two postulates C. three postulates D. four postulates
10	According to the special theory of relativity, time is	A. absolute quantity B. not absolute quantity C. constant quantity D. none of these
11	The speed of a pendulum is measured to be 3.0 s in the inertial reference frame of the pendulum. What is its period measured by an observer moving at a speed of 0.95 c with respect to the pendulum	A. 2.9 s B. 3.0 s C. 6.6 s D. 9.6 s
12	The length contraction happens only	 A. Opposite to the direction of motion B. along the direction of motion C. perpendicular to the direction of motion D. In any direction
13	According to Einstein, with the great increase in the speed of the body the relativistic length of the body	A. Remains constant B. Decreases C. Increases D. Reduces to zero
14	If you are moving at relativistic speed between two points that are a fixed distance apart, then the distance between the two points appers	A. larger B. shorter C. equal

		D. none of these
15	A bar 1.0 m in length and located along x-axix moves with a speed of 0.75 c with respect to a stationary observer. The length of the bar as measured by the stationary observer is	A. 1.66 m B. 1.0 m C. 0.66 m D. 2.66 m
16	According to Einstein, with the great increase in the speed of the body, the relativistic mass of the body	A. Remains constant B. Decreases C. Increases to infinity D. Reduced to zero
17	Which one of the following physical quantities changes with relativistic speed	A. Length B. Mass C. Time D. All of the above
18	If a material object moves with the speed of light 'C' its mass becomes	A. Equal to its rest mass B. Four times of its rest mass C. Double of its rest mass D. Infinite
19	If a body reaches a speed equal to the speed of light, then its mass will became	A. zero B. very small C. infinity D. none of these
20	The Einstein's changes in length, mass and time are not observed in common life because	A. We dont observer then seriously B. The masses are too large C. Their speed is too small than the speed of right D. All of the above
21	The mass 'm' of a body moving at 0.8 c (whose rest mass is mo) becomes	A. 2 mo B. 1.67 mo C. 0.67 mo D. 2.67 mo
22	The mass of an object will be doubled at speed	A. 1.6 x 10 ⁸ ms ^{- 1} B. 2.6 X 10 ⁸ ms ^{- 1} C. 2.6 x 10 ⁷ ms ^{- 1} D. 2.6 x 10 ⁹ ms ^{- 1}
23	According to the special theory of relativity	 A. mass and energy are same entities B. mass and energy are same entities but interconverible C. mass and energy are different entities but interconverible D. mass and energy are different entities but non-interconverible
24	The location and speed anywhere on earth can now be determined using relativistic effects by NAVISTAR to an accuracy of	A. 2 cm/s B. 20 cm/s C. 200 cm/s D. 2000 cm/s
25	Newton's law of motion do not hold in	A. an accelerated frame of reference B. an unaccelerated frame of reference C. both of these D. none of these
26	According to the special theory of relativity, a moving clock	A. runs faster B. runs slower C. neither runs faster nor slower D. all of these
27	At the temperature, a body emits radiation which is principally	 A. of long wavelengths in the visible region B. of long wavelengths in the invisible infrared region C. of short wavelength in invisible ultraviolet region D. none of these
28	A high temperature, the proportion of shorter wavelengths radiation, emitted by the body	A. decreases B. first increases then decreases C. increases D. any one of them
29	When a platinum wire is heated, it appears dull red at about	A. 500°C B. 900°C C. 1100°C D. 1300°C

30	When a platinum wire is heated, it appears orange red at	A. 500 <span style="color: rgb(84, 84,
84); font-family: arial, sans-serif; font-
size: small;">°C B. 900 <span style="color: rgb(84, 84,
84); font-family: arial, sans-serif; font-
size: small;">°C C. 1100 <span style="color: rgb(84,
84, 84); font-family: arial, sans-serif;
font-size: small;">°C D. 1300 <span style="color: rgb(84,
84, 84); font-family: arial, sans-serif;
font-size: small;">°C
31	When a platinum wire is heated, it appears yellow at	A. 1600°C B. 900°C C. 1100°C D. 1300°C
32	When platinum wire is heated, it appears cherry red at	A. 1600 <span style="color: rgb(84,
84, 84); font-family: arial, sans-serif;
font-size: small;">°C B. 900 <span style="color: rgb(84, 84,
84); font-family: arial, sans-serif; font-
size: small;">°C C. 1100 <span style="color: rgb(84,
84, 84); font-family: arial, sans-serif;
font-size: small;">°C D. 1300 <span style="color: rgb(84,
84, 84); font-family: arial, sans-serif;
font-size: small;">°C
33	When a platinum wire is heated, it appears white at	A. 1600 <span style="color: rgb(84,
84, 84); font-family: arial, sans-serif;
font-size: small;">°C B. 900 <span style="color: rgb(84, 84,
84); font-family: arial, sans-serif; font-
size: small;">°C C. 1100 <span style="color: rgb(84,
84, 84); font-family: arial, sans-serif;
font-size: small;">°C D. 1300 <span style="color: rgb(84,
84, 84); font-family: arial, sans-serif;
font-size: small;">°C
34	A black body is	A. an ideal absorber B. an ideal radiator C. both of them D. none of them
35	The inside cavity of the black body is	A. painted white B. painted silver C. blackened with soot D. painted red
36	The Stephen-Boltzmann law for the black body radiation is given by	A. E = T ² B. E = -T ² C. E = T ⁴ D. E = -T ⁴
37	The value of the Stephen's constant for black body radiations is given by	A. 5.6 x 10 ⁸ Wm ^{- 2} K ⁻⁴ B. 5.67 x 10 ⁻⁸ Wm ^{- 2} K ⁻⁴ C. 2.9 x 10 ⁻³ mK D. 2.9 x 10 ³ mK
38	Max plank founded a mathematical model resulting in an equation that describes the shape of observed black body radiation curves exactly, in	A. 1890 B. 1895 C. 1900 D. 1905
39	According to the Max plank, energy is redialed or absorbed in	A. discrete packets B. continuous waves C. either of them D. none of these
40	The energy of a photon is represented by	A. h/c ² B. h/T C. hc ² D. hf/c ²
41	The energy of photon 'E' is proported to	A. The magnetic field H B. The electric field E C. Both the electric and magnetic field H and E D. Frequency
		A. J-s ⁻¹

42	S.I. unit of planks constant is	B. J.s C. J.s ⁻² D. J.s ²
43	A photon is considered to have	A. Momentum B. Energy C. Wavelength D. All of the above
44	The value of the plank's constant 'h' is given by	A. 1.6 x 10 ⁻¹⁹ J B. 1.67 x 10 ⁻²⁷ Kg C. 6.63 x 10 ³⁴ Js D. 6.63 x 10 ⁻³⁴ Js
45	In photoelectric effect the energy of ejected electrons depend on	A. The frequencyB. The intensityC. Both frequency and intensityD. None of these
46	Max plank received the Nobel Prize in physics for his discovery of energy quanta in	A. 1900 B. 1906 C. 1912 D. 1918
47	From the theory of relativity, momentum p of the photon is related to energy as	A. $p = hfc$ B. $p = hf/c$ C. $p = f(hc,f)$ D. $p = cf/h$
48	The photon of radio-waves has energy of about	A. 1 Me V B. 1 Ke v C. 10 ⁻¹⁰ e v D. 10 ¹⁰ e v
49	The energy of a photon in a beam of infrared radiation of wavelength 1240 nm is	A. 100 ev B. 10 ⁶ e v C. 10 ³ e v D. 1.0 e v
50	The analysis of the distribution of wavelengths of the radiation emitted from a hot body set the foundation of new mechanics, known as	A. classical mechanics B. Newtonian mechanics C. quantum mechanics D. statistical mechanics
51	The whole shape of the black body spectrum for all wavelengths was explained by the formula proposed by	A. Max plank B. Newton C. Einstein D. J.J. Thomson
52	Electromagnetic radiation or photons interact with matter in	A. two distinct ways B. three distinct ways C. four distinct ways D. five distinct ways
		A. pair production
53	I he emission of electrons from a metal surface when exposed to light of suitable frequency is called the	B. Compton effect C. photoelectric effect D. relativity
54	When monochromatic light is allowed to fall on cathode, it begins to emit electrons, these electrons are called	A. thermoionic electrons B. free electrons C. photoelectrons D. slow electrons
55	The photoelectric effect, the maximum energy of photoelectrons depends on the	A. particular metal surface B. frequency of incident light C. both of them D. none of them
56	There is certain frequency below which no electrons are emitted from the metal surface, this frequency is known as	A. maximum frequency B. minimum frequency C. threshold frequency D. all of these
57	The value of threshold frequency for different metals is	A. different B. same C. may be different or may be same D. none of these
58	As the light shines on the metal surface, the electrons are ejected	A. slowy B. instantaneously C. either of these D. none of these
59	According to the electromagnetic wave theory of light, increasing the intensity of incident light should increase the	A. number of photoelectrons B. size of the photoelectrons C. charge on photoelectrons D. K.E of photoelectrons

60	Albert Einstein got the Nobel prize in physics for his explanation of photoelectric effect in	A. 1916 B. 1919 C. 1921 D. 1923
61	In the compton's effect, it is found that the wavelength of incident x-rays is	A. greater than the wavelength of scattered x-rays B. equal to the wavelength of scattered x-rays C. less than the wavelength of scattered x-rays D. any one of these
62	Compton was awarded Nobel prize in physics in	A. 1921 B. 1923 C. 1925 D. 1927
63	When low energy photon interact with a metal, which of the following effect is likely to be taken place	A. pair production B. photoelectric C. Compton effect D. None of these
64	When a high energy photon interact with a metal, which of the following effect is most likely to be taken place	A. pair production B. photoelectric effect C. Compton effect D. None of these
65	If the radius of first orbit of hydrogen atom is 0.53° A the radius of second orbit will be	A. 2.120 <span style="color: rgb(84,
84, 84); font-family: arial, sans-serif;
font-size: small;">°A B. 0.212 <span style="color: rgb(84,
84, 84); font-family: arial, sans-serif;
font-size: small;">°A C. 21.2 <span style="color: rgb(84, 84,
84); font-family: arial, sans-serif; font-
size: small;">°A D. 0.14 <span style="color: rgb(84, 84,
84); font-family: arial, sans-serif; font-
size: small;">°A D. 0.14 <span style="color: rgb(84, 84,
84); font-family: arial, sans-serif; font-
size: small;">°A Syle="color: rgb(84, 84, 84); font- family: arial, sans-serif; font- size: small;">
66	In order to produce pair production, a photon must have a energy	A. 0.511 Me v B. 0.256 Me v C. 1.02 Me v D. 0.956 Me v
67	Converse of pair production is known as	A. Compton effect B. annihilation of matter C. photoelectric effect D. none of these
68	When a position comes close to an electron they annihilate into	 A. one photon B. two photons which travel in the same direction C. two photons which travels in the opposite direction D. two photons which travel in any direction
69	When a position comes close to an electron they annihilate into photons such that	A. each photon has energy 0.51 Me v B. each photon has energy 1.02 Me v
		C. each photon has energy 0.25 Me v D. none of these
70	The existence of position was predicted by Dirace in	C. each photon has energy 0.25 Me v D. none of these A. 1920 B. 1925 C. 1930 D. 1928
70	The existence of position was predicted by Dirace in Position was discovered by Carl Anderson in	C. each photon has energy 0.25 Me v D. none of these A. 1920 B. 1925 C. 1930 D. 1928 A. 1920 B. 1925 C. 1928 D. 1925 C. 1928 D. 1928
70 71 72	The existence of position was predicted by Dirace in Position was discovered by Carl Anderson in Pair production is the phenomenon in which	C. each photon has energy 0.25 Me v D. none of these A. 1920 B. 1925 C. 1930 D. 1928 A. 1920 B. 1925 C. 1928 D. 1925 C. 1928 D. 1932 A. matter is converted into energy B. energy is converted into electrical energy D. electrical energy is converted into light

o. energy D. mass

74	Photocell is a device which converts	A. chemical energy into electrical energyB. electrical energy into light energyC. heat energy into electrical energyD. light energy into electrical energy
75	According to the de-Brogile relation, an object of large mass and ordinary speed has	A. very small wavelength B. very large wavelength C. very small frequency D. all of these
76	The stopping voltage for a certain metal is 100 volts, then the work function for the cathode plate is	A. 100 J B. 1.6 x 10 ⁻¹⁷ J C. 100 eV D. 1.6 x 10 ⁻¹⁷ eV
77	0.1 kg mass will be equivalent to the energy	A. 9 x 10 ¹⁵ J B. 5 x 10 ⁸ J C. 6 x 10 ¹⁶ J D. 9 x 10 ⁻¹⁶ J
78	Victor de-Brogile received the Nobel prize in physics in	A. 1925 B. 1929 C. 1932 D. 1935
79	A particle of mass 5.0 mg moves with a speed of 8.0 m/s. Its de-Brogile wavelength is	A. 1.66 m B. 1.66 x 10 ⁻¹⁰ m C. 1.66 x 10 ⁻²⁹ cm D. 1.66 x 10 ⁻²⁹ m
80	An electron is accelerated through a potential difference of 50v. its de-Brogile wavelength is	A. 1.66 x 10 ⁻²⁹ m B. 1.74 x 10 ⁻¹⁰ cm C. 17.4 x 10 ⁻⁶ m D. 1.74 x 10 ⁻¹⁰ m
81	Which of the following phenomenon proves the particle nature of light	A. interference B. diffraction C. photoelectric effect D. none of these
82	With the help of 50 K v electron microscope, a resolution of	A. 0.5 to 1 m to possible B. 1 m to 10 m is possible C. 0.5 to 1 nm is possible D. 1 to 10 nm is possible
83	Momentum is a parameter associated with	A. wave motion B. particle motion C. neither wave nor particle motion D. none of these
84	Wave nature of particle was proposed by	A. Einstein B. Plank C. De-Brogile D. Max well
85	Davision and Germer performed experiment to verify	A. de-Brogile hypothesis B. theory of relativity C. Newton's law of gravitation D. Mass-energy relation
86	G.P. Thomson observer experimentally that electrons and neutrons possess	A. particle-like properties B. wave-like properties C. neither particle nor wave like properties D. none of these
87	de-Broglies hypthesis was experimentally verified by	A. Maxwell B. Compton C. Einstein D. Davison and Germer
88	Position and momentum of a particle cannot both be measured simultaneously with perfect accuracy. This is the statement of	A. photoelectric effect B. pair production C. Compton effect D. uncertainty principle
89	The energy of the 4th orbit in hydrogen atom is	A. 2.5 ev B 3.5 ev C0.85 ev D13.6 ev
90	Current, voltage, resistance measuring circuit is connected with the galvanometer with the help of switch, known as	A. ON switch B. off switch C. function switch D. none of these
		A. Absolute

91	The concept of direction is purely:	B. Relative C. Relative to stars always D. Relative to the sun always E. None of these
92	Strictly speaking, the earth is:	A. An accelerated frame of reference B. A non-inertial frame of reference C. An inertial frame of reference D. ^{A non-accelerated frame of reference} E. Both (A) and (B)
93	The special theory of relatively treats the problems involving:	 A. Inertial frames of reference B. Non-inertial frames C. Non-accelerated frame D. Botha (A) and (C) E. Both (B) and (C)
94	The special theory of relativity is based on:	A. Four postulates B. Three postulates C. Two postulates D. One postulate E. None of these
95	There is no way to detect:	A. Absolute uniform motionB. Accelerated motionC. State restD. State of motionE. None of these
96	the symbol to be used in relativity problems denotes:	A. Dilated time B. Proper time C. Life time D. Half time E. None of these
97	Practically the quantity v/c is always:	A. less than one B. Equal to one C. Greater then one D. all of these E. None of these
98	Due to relative motion of observer and the frame of reference of events, time always:	A. Dilates itself B. Contracts itself C. Stretches itself D. Both (A) and (C) E. None of these
99	the dilation of time applies to the timing processes which are:	A. Physical B. Chemical C. Biological D. All of these E. None of these
100	As compared to the distance measured by an observer on Earth, the distance from Earth to a star measured by an observer in a moving spaceship would seem:	A. Smaller B. Lerger C. Same D. Much larger E. None of these
101	When the atomic particle are moving with velocities approaching that of light:	A. Newton's laws become valid B. Relativistic effects become prominent C. Botha(A) and (B) are valid D. Neither (A)nor (B) E. There mass becomes zero.
102	The nature of radiations emitted by a hot body depends upon its:	A. Metarial B. Temperature C. colour D. Volume E. Length
103	When platinum wire is heated, then at the temperature of 500 $^{ m O}$ C, it becomes:	A. Yellow B. Orange red C. Dull red D. White E. Cherry red
104	The intensity of emitted energy (with wavelength) radiated from a black body at different temperatures was initially measured by:	A. Lummer B. Planck C. Pringsheim D. Both (A) and (B) E. Both (A) and (C)
105	Wien's constant is measured in:	A. Metre per kelviin B. Metre kelvin C. Kelvin per meter D. Joules

		E. Dynes
106	The ratio of energy E to the corresponding frequency (f) of the radiation (emitted or absorbed) is called:	A. Wien's constant B. Stefen's constnat C. Planck's constant D. Boltzmann's constant E. None of these
107	Max Planck received the Nobel Prize for his discovery of energy quants in:	A. 1718 AD B. 1918 AH C. 1818 AD D. 1918 AD E. None of these
108	If A represents linear momentum and c, the velocity of light, then unit of pc in international system of units is:	A. Newton B. Joule C. Joule-Sec D. Joule-s ⁻¹ E. Watt
109	The way through which electromagnetic radiations or photons interact with matter depends upon their:	A. Wavelength B. Frequency C. Energy D. Temperature E. All of these
110	Electromagnetic -radiation means:	A. Photons B. protons C. Electrons D. Mesons E. None of these
111	Intensity of light determines the:	A. Energy of each photonB. Number of photonsC. Speed of photonsD. Size of photonsE. None of these
112	The idea of quantization of energy was proposed by:	A. Einstein B. Max.Planck C. Maxwell D. Bohr E. Rutherford
113	The Nobel Prize on the explanation of photoelectric effect was awarded to:	A. Max. Planck B. Maxwell C. Bohr D. Rutherford E. None of these
114	Photoelectrons are emitted when ultraviolet light falls on:	A. Casium B. Silver C. Potassium D. Any of these E. None of these
115	The unit of work function is:	A. Joule B. Electron volt C. That of threshold frequency D. Both (A) and (B) E. None of these
116	The threshold frequency of sodium is 6 x 10^6 MHz. The cut-off wavelength for this metal will be	A. 500 m B. 500 nm C. 500 km D. 500 cm E. None of these
117	Compton studied the scattering of x-rays by loosely bound electrons from:	A. NaCl crystal B. Graphite crystal C. Zirconia D. Copper crystal E. None of these
118	Compton derived an expression to find compton shift by applying to the process, the law of conservation of:	A. Energy only B. Momentum only C. Mass only D. Charge only E. Both (A) and (B)
119	The year when A.H. compton was awarded Nobel Prize is:	A. 1923 B. 1927 C. 1931 D. 1935 E. None of these
120	Compton shift refers to:	A. Photon B. Meson C. Proton

		D. Positron E. Both (B) and (D)
121	Photoelectric effect takes place with a photon of:	A. Very high energyB. Very low energyC. Low energyD. High energyE. None of these
122	A particle having mass and charge equal to that of an electron is called:	A. Proton B. Positron C. Pion D. Pi-meson E. Both (C) and (D)
123	The positron was discovered by:	A. In cosmic radiation B. In 1932 C. By Carl Anderson D. All above E. By direc