

ECAT Physics Chapter 18 Electronics Online Test

Sr	Questions	Answers Choice
1	Whenever a covalent bond breaks, it creates:	A. An electron B. A hole C. An electron-hole pair D. A positron E. All of these
2	Computer chips are made from:	A. Iron B. Silicon C. Helium D. Stontium E. Aluminium
3	Depletion region contains:	A. Protons B. Positive ions C. Negative ions D. Both (B) and (C) E. Both (A) and (C)
4	A potential barrier of 0.7V exists across p-n junction made from:	A. Germanium B. Silicon C. Arsenic D. Gallium E. Indium
5	.Depletion region contains:	A. Protons B. Positive ions C. Negative ions D. Both (B) and (C) E. Both (A) and (C)
6	An LED emits light when it is:	A. Forward biased B. Reverse biased C. Operated without battery D. Operated with heat source E. None of these
7	Inverter is the name given to:	A. NOT gate B. OR gate C. NOR gate D. AND gate E. XOR gate
8	In describing function of digital systems, 1 represents:	A. Closed switch B. True Statement C. Lighted bulb D. Only (B) and (C) E. All are true
9	The value of LDR depends upon intensity of:	A. Sound falling on it B. Current passing through it C. Magnetic field surrounding it D. Light falling on it E. Non of these
10	The values 1 and 0 are designated as:	 A. Continuous values B. Binary values C. Boolean values D. Decimal values E. Either (B) and (C)
11	In an N-type silicon, which of the following statement is true	 A. Electrons are majority carriers and trivalent atoms are the dopants B. Electrons are minority carriers and pentavalent atoms are the dopants C. Holes are minority carriers and pentavalent atoms are the dopants D. Holes are majority carriers and trivalent atoms are the dopants
12	The reverse saturation current in a PN junction diode is only due to	A. Majority carriers B. Minority Carriers C. Acceptor ions D. Donor ions
		A. Heavy loading of emitter current

13	Improper biasing of a transistor circuit produces	B. Distortion in the output signal C. Excessive heat at collector terminal D. Faulty location of load line
14	When transistors are used in digital circuits they usually operate in the	A. Active region B. Breakdown region C. Saturation and cutoff regions D. Linear region
15	Most of the electrons in the base of an NPN transistor flow	A. Out of the base leadB. Into the collectorC. Into the emitD. Into the base supply
16	In a transistor, collector current is controlled by	A. Collector voltage B. Base current C. Collector resistance D. All of the above
17	If the distance between two charges is doubled, the force between them will become	A. Double B. Half C. Three times D. One fourth E. One third
18	Origin of the electric and the gravitational forces	A. Was known in 1911 A.D. B. Was known in 1811 A.D. C. Was known in 1711 A.D. D. is still unknown E. Was known in 1611 A.D.
19	The concept of electric field theory was introduced by	A. Michael Faraday B. Newton C. Dalton D. Kepler E. Einstein
20	Michael Faraday is known by his work on	A. Nuclear strong force B. Gravitational force C. Nuclear weak force D. Electric force E. None of these
21	Electric field strength is defined as	A. Work done on unit charge B. Force exerted on unit charge C. Distance covered by unit charge D. Power exerted by unit charge E. None of these
22	Electric intensity at a place due to a charged conductor is a	A. Scalar quantity B. Vector quantity C. Semi vector and semi scalar D. Dimensionless quantity E. Both A and D are true
23	The intensity at a point due to a charge is inversely proportional to	 A. Amount of charge B. Size of the charge C. Distance between charge and the point D. Square of the distance from the charge E. None of these
24	The SI unit of charge is	A. Ampere B. Watt C. Coulomb D. Volt E. Joule
25	The electric field lines start from	A. Positive chargeB. Negative chargeC. Either A or BD. NeutronE. An atom
26	Electric lines of force	 A. Intersect each other B. Are always parallel C. Are always anti-parallel D. Never intersect E. None of these
27	By placing a dielectric in between the charges, the electrostatic force between them	A. Is always reducedB. Is always increasedC. Is not affectedD. Is increased one million timesE. None of these
		A Equal

28	The value of relative permittivity of different dielectrics are	B. Different C. Greater than one D. Smaller than one E. Both B and C
29	Electric field lines emerge from the charges in	A. One dimensionB. Two dimensionsC. Three dimensionsD. Four dimensionsE. None of these
30	Field lines are closer to each other in the region where the filed is	A. Stronger B. Weaker C. Much weaker D. Absent E. None of these
31	Silicon is one of the mot commonly used:	A. onductor B. Dielectric C. Insulator D. Semiconduction E. Both (B) and (C)
32	The use of chips in electrons is described in the form of:	A. Yellow boxes B. Black boxes C. Red boxes D. White boxes E. Orange boxes
33	Crystal of germanium or silicon in its pure form at absolute zero acts as:	A. A conductor B. A semiconductor C. an insulator D. Both (A) and (C) E. Both (A) and (B)
34	All the valence electrons present in a crystal of silicon are bound in their orbits by	A. lonic bond B. covalent bond C. Molecular bond D. Both (A) and (B) E. Both (B) and (C)
35	Majority charge carriers in the p-region of p-n junction are:	A. electrons B. positrons C. Holes D. Neutrons E. None of these
36	A hole in p-type my be due to:	A. Trivalent impurity B. Breking of some covalent bond C. Pentavalent impurity D. Germanium E. Either (A) or (B)
37	A potential barrier of 0.7 V exists across p-n junction made from:	A. Germanium B. Silicon C. Arsenic D. Gallium E. Indium
38	In the forward biases situation, the current flowing across the p-n junction is a few:	A. amperes B. Milli amperes C. Micro amperes D. Pico amperes
39	In reverse-biased p-n junction, the reverse current is due to flow of:	 E. None of these A. Minority charge carriers B. Majority charge carriers C. Free electrons from p to n-region D. Holes from n to p-region E. all are true except (B)
40	In full wave rectification, simultaneous action is that:	 A. Two diodes conduct and two do not. B. One diode conduct and three do not. C. Three diodes conduct and one does not. D. All the four diodes conduct E. None of these
41	A diode which can turn its current ON and OFF in nono seconds is called:	A. LED B. Photodiode C. An ordinary diode. D. Both (A) and (B) E. Both (B) and (C)
42	The number of LED'S needed to display all the digits is:	A. Four B. Five C. Nine

		D. Six E. Seven
43	A transistor has:	A. One region B. Two regions C. Three regions D. Four regions E. None is correct
44	In the text book, the transistor amplifier circuit is a:	A. Common emitter circuit B. Common collector circuit C. Common base circuit D. Any of these E. None of these
45	To make an LED, it is impreacticable to use:	A. Silicon B. Gallium arsenide C. Gallium arsenide phosphide D. Iron E. Both (B) and (C)
46	To display a digit of EIGHT, the number of ON LED'S are:	A. Two B. Three C. Five D. Seven E. Eight
47	An electronic computer is basically a vast arrangement of electronic switches which are made from	A. Resistors B. Transistors C. N -type crystals D. P-Type crystals E. Capacitors
48	The number of input terminals of an op-amp is:	A. One B. Two C. Three D. Four E. None of these
49	A digital system deals with quantities which has discrete values:	A. Two in number B. One in number C. Three in number D. Four in number E. None of these
50	In AND gate, the output is 1 if:	A. Both inputs are 0 B. Both inputs are 1 C. Only one input is 0 D. Both (A) and (B) E. Both (A) and (C)
51	To turn the transistor OFF, the base current is set:	A. At maximum value B. At zero C. Either (A) or (B) D. All are correct
52	Op-amp has been discussed as comparator of:	E. None of correct A. Distances B. Voltages C. Velocities D. Magnetic fields E. Both (A) and (C)
53	To designate the voltage as low or 0 by a logic gate, the specified minimum value is:	A. 0.2 volt B. 0.8 volt C. 0 volt D. 2.0 volt E. 5.0 volt
54	Truth table of logic function:	 A. Summarizes its output values B. Tabulates all its input conditions only C. Display all its input/output possibilites D. Is not based on logic algebra E. None of these
55	If both the inputs given to a gate ae 1 such that the output is 0, then it is:	A. AND gate B. NOR gate C. OR gate D. NOT gate E. Both (A) and (C)
56	Conversion of A.C. into D.C. is called:	A. ReftificationB. AmplificationC. Electric inductionD. Magnetic inductionE. None of these