

ECAT Physics Chapter 17 Physics of Solids Online Test

C r	Questions	Angunto Choice
Sr	Questions	Answers Unoice
1	There is a regular arrangement of molecules in a	A. amorphous solids B. polymeric solids C. crystalline solids D. none of them
2	The solids which has structure in-between order and disorder are called	A. amorphous solids B. polymeric solids C. crystalline solids D. all of them
3	The neighbours of every molecule in crystalline solids are arranged in	A. an irregular manner B. a regular manner C. any manner D. none of them
4	The vast majority of solids are in the form of	A. amorphous structure B. polymeric structure C. crystalline structure D. all of them
5	The molecules or ions in a crystalline solids are	A. static B. not static C. randomly moving D. all of them
6	The amplitude of oscillation of each atom in a metallic crystal rises with the	A. rise in temperature B. decrease in temperature C. even temperature remains constant D. all of them
7	In metallic crystals which of the following thing remains constant	A. amplitude of oscillations B. temperature of solid C. average atomic positions D. all of them
8	The cohesive forces between atoms, molecules or ions in crystalline solids maintain the strict	A. short range order B. long range order C. both of them D. none of them
9	Every crystalline solid has	A. definite melting point B. different melting points C. may or may not be definite D. none of them
10	Amorphous solids are also more like	A. crystalline solids B. gases C. liquids D. any one of them
11	Amorphous solids are also called as	A. crystalline solids B. polymeric solids C. glassy solids D. any one of them
12	Glass is an example of	A. crystalline solid B. amorphous solid C. polymeric solid D. none of them
13	On heating, glass gradually softens into a paste like before it becomes a very viscous liquid at almost	A. 600 <b style="color: rgb(34, 34,
34); font-family: sans-serif;">° C B. 7600 <b style="color: rgb(34, 34,
34); font-family: sans-serif;">° C C. 800 <b style="color: rgb(34, 34,
34); font-family: sans-serif;">° C D. 900 <b style="color: rgb(34, 34,
34); font-family: sans-serif;">° C
14	Synthetic materials fall into the category of	A. crystalline solids B. amorphous C. polymeric solids D. all of them

15	Polymeric solids have	A. low specific gravity B. high specific gravity C. either of them D. none of them
16	The smallest three dimensional basic structure in a crystalline solid is called	A. lattice point B. crystal lattice C. cubic crystal D. unit cell
17	The crystalline structure of NaCI is	A. rectangular B. hexagonal C. tetrahedral D. cubical
18	The ability of the body to return to its original shape is called	A. deformation B. stretching C. compressing D. elasticity
19	The results of mechanical tests are usually expressed in terms of	A. stress B. strain C. stress and strain D. neither strees nor strain
20	The force applied on unit area to produce any change in the shape, volume or length of a body is known as	A. strain B. elasticity C. stretching D. stress
21	The SI unit of stress is	A. N/m ² B. Nmc C. dynes/m D. N
22	When a stress changes length, it is called the	A. compressional stress B. tensile stress C. shear stress D. any one of them
23	When a stress changes the shape, it is called the	A. compressional stress B. tensile stress C. shear stress D. any one of them
24	The measure of the deformation in a solid when stress is applied to its is called	A. elastic constant B. young's modulus C. strain D. elasticity
25	The SI unit of strain is	A. N B. Dynes C. Pascal D. Dimensionless
26	Experiments revealed that the ratio of the stress to the strain is a constant value for	A. different material B. all materials C. a given material D. all of them
27	The modulus of elasticity can be written as	A. stress x strain B. strain/stress C. 1/2 x stress x strain D. stress/strain
28	The units of modulus of elasticity are	A. Nm ⁻² B. Nm C. ms ⁻¹ D. Pascal
29	The ratio of linear stress/linear strain is called as	A. Yong's modulus B. Bulk modulus C. Shear modulus D. Modulus
30	The ratio of shearing stress/shearing strain is called as	A. Modulus B. Pascal modulus C. Hooker's modulus D. Shear modulus
31	In case of the three dimensional deformation, when volume is involved, the ratio of applied stress to volumetric strain is called	A. Young's modulus B. Bulk modulus C. Shear modulus D. all of them
32	When the shear stress and shear stain are involved, then their ratio is called	A. Young's modulus B. Bulk modulus C. Shear modulus

		D. all of them
33	The number of different crystals systems based on the geometrical arrangement of their atoms and the resultant geometrical structure are	A. 5 B. 7 C. 9 D. 14
34	In the stress-strain graph, stress is increased linearly with strain until a point is reached, this point is known as	A. plastic limit B. plastic deformation C. proportional limit D. elastic behaviour
35	The greatest stress that a material can endure without losing the proportionality between stress and strain is called	A. plastic line B. breaking point C. proportional limit D. none of them
36	Under the elastic region, the deformation produced in the material, the deformation produced in the material will be	A. permanent B. temporary C. either of them D. none of them
37	If the stress increased beyond the elastic limit of the material. the deformation produced in the material will be	A. permanent B. temporary C. either of them D. none of them
38	when the deformation produced in the material become permanent, this type of behaviour is called	A. proportionality B. elasticity C. plasticity D. none of them
39	The maximum stress that a material can withstand, is known as	A. plastic point B. elastic limit C. yield point D. ultimate tensile strength
40	Substances which break just after the elastic limit is reached, are known as	A. brittle substances B. ductile substances C. plastic substances D. elastic substances
41	The substances which break just after the elastic limit is reached, are known as	A. brittle substances B. ductile substances C. plastic substances D. elastic substances
42	Glass and high carbon steel are the examples of	A. brittle substances B. ductile substances C. plastic substances D. elastic substances
43	Lead, copper and wrought iron are examples of	A. brittle substances B. ductile substances C. plastic substances D. elastic substances
44	Which of the following theory completely explain the three types of materials	A. Bohr model of electron distributionB. Rutherford atomic modelC. Pauli's exclusion principleD. energy band theory
45	Electrons of an isolated atom are bound to the nucleus, and	A. can only have distinct energy levelB. can only have same energy levelC. may or may not have distinct energy levelsD. none of these
46	When a large number of atoms are brought close to one another to form a solid, each energy level of an isolated atom splits into sub-levels, called	A. energy bands B. energy shells C. states D. all of them
47	The electrons in the outermost shell of an atom are called	A. core electrons B. valence electrons C. high energy electrons D. none of them
48	The valence band of an atom in a solid	A. is always empty B. may or may not be empty C. can never be empty D. none of them
49	The band above the valence band is called	A. high energy band B. conduction band C. empty band D. none of them

50	The electrons occupying the conduction band are known as	A. conduction electrons B. free electrons C. both of them D. none of them
51	The conduction band in a solid	A. may be emptyB. cannot be emptyC. should be filedD. all of them
52	The bands below the valence band are	 A. completely filled and play active part in conduction process B. completely filled and plays no part in conduction process C. completely filled and play active part in conduction process D. not completely filled and play no part in conduction process
53	The materials in which valence electrons are bound very tightly to their atoms and are not free, are known as	A. conductors B. insulators C. semi-conductors D. all of them
54	The materials in which there are plenty of free electrons for electrical conduction are known as	A. conductors B. insulators C. semi-conductors D. all of them
55	A semi-conductor in its extremely pure form is known as	A. extrinsic semi-conductor B. intrinsic semi-conductor C. either of them D. none of them
56	When small number of atoms from some other suitable element is added to the semi- conductor material, then this process is known as	A. impurification B. adding C. doping D. extrinsivity
57	In the doping process, the ratio of the doping atoms to the semi conductor atom is	A. 1 to 10 B. 1 to 10 ³ C. 1 to 10 ⁶ D. 1 to 10 ⁹
58	The doped semi-conductor materials are known as	A. intrinsic semi-conductor B. extrinsic semi-conductor C. either of them D. none of them
59	Semi-conductor elements have atoms with	A. 2 valence electronsB. 3 valence electronsC. 4 valence electronsD. 5 valence electrons
60	The bonding between the semi-conductor materials is	A. covalent B. ionic C. either of them D. none of them
61	Arsenic, antimony and phosphorus are the elements from	A. third group B. fourth group C. fifth group D. none of them
62	When a silicon crystal is doped with a pentavalent element, such an extrinsic semi- conductor is called	A. p-type semi-conductor B. n-type semi-conductor C. either of them D. none of them
63	When a silicon crystal is doped with a pentavalent element, then the atom of the pentavalent element is known as	A. acceptor B. donor C. either of them D. none of them
64	Whenever a covalent bond is broken in an intrinsic semi-conductor	A. hole is created B. an electron is created C. an electron-hole pair is generated D. all of them
65	In a semi-conductor material, current flows due to	A. positive charge B. negative charge C. both of them D. none of them
66	In a semi-conductor material, the total current is	A. only the +ve current B. only the electronic current C. sum of +ve and electronic current D. all of them
		· · · ·

67	There are some whose resistivity becomes zero below a certain temperature, called	A. absolute zero B. 0 <span style="color: rgb(84, 84,
84); font-family: arial, sans-serif; font-
size: small;">°C C. critical temperature D. lower fixed point
68	The first super conductor was discovered in	A. 1811 B. 1890 C. 1901 D. 1911
69	The critical temperature of mercury is	A. 1.18 K B. 4.2 K C. 3.72 K D. 7.2 K
70	The critical temperature of aluminium is	A. 1.18 K B. 4.2 K C. 3.72 K D. 7.2 K
71	The critical temperature of tin is	A. 1.18 K B. 4.2 K C. 3.72 K D. 7.2 K
72	Any superconductor with critical temperature above 77 K, is referred as	A. low temperature superconductor B. high temperature superconductor C. very low temperature superconductor D. none of them
73	Recently a complex crystalline structure known as Yetrium Barium Copper Oxide have been reported to become superconductor at	A. 125 K B. 25 K C. 263 K D. 163 K
74	The magnetism produced by electrons within an atom can arise from	A. electrons orbiting the nucleusB. electrons posses a spinC. both motionsD. none of these motions
75	An atom in which there is a resultant magnetic field, behaves like a tiny magnet and is called as	A. magnetic B. magnetic dipole C. magnetic monopole D. none of them
76	The charged nucleus of an atom itself spins its magnetic field	 A. equal to the field produced by orbital electrons B. greater than the field produced by orbital electrons C. much weaker than the field produced by orbital electrons D. none of these
77	The substances in which, atom are so oriented that their fields support each other and the atoms behave like tiny magnets, are called	A. diamagnetic substances B. ferromagnetic substances C. paramagnetic substances D. all of them
78	The substance in which atoms are so oriented that the field produced by spin and orbital motion of the electrons might add up to zero, are called	A. diamagnetic substances B. ferromagnetic substances C. paramagnetic substances D. all of them
79	The substance in which atoms cooperate with each other in such a way so as to exhibit a strong magnetic effect, are called	A. diamagnetic substances B. ferromagnetic substances C. paramagnetic substances D. all of them
80	Recent studies of ferromagnetism have shown that there exists in ferromagnetic substances small regions called	A. tiny regions B. domains C. vectors D. none of them
81	The domains are of macroscopic size of the order of	A. centimeters B. meters C. millimeters D. nanomneters
82	The size of the domain is such that they can contain	A. 10 ² to 10 ⁴ atoms B. 10 ⁴ to 10 ⁸ atoms C. 10 ⁸ to 10 ¹² atoms D. 10 ¹² atoms D. 10 ¹² to 10 ¹⁶ atoms

83	Within each domain, the magnetic field of all the spinning electrons are	A. parallel B. antiparallel C. perpendicular D. all of them
84	In a soft iron, domains are	 A. easily oriented along external field and do not return to original random positions B. easily oriented along external field and readily returns to originally random position C. do no oriented along external field and also do not returns to originally random position D. none of them
85	Which of the following can become a good permanent magnet	A. iron B. steel C. both of them D. none of them
86	Which of the following can become a good temporarily magnet	A. iron B. steel C. both of them D. none of them
87	Ferromagnetic substances lose their magnetism when heated above a certain temperature, known as	A. critical temperature B. curie temperature C. high temperature D. fixed temperature
88	Above the curie temperature, iron becomes	A. ferromagnetic B. paramagnetic C. diamagnetic D. any one of them
89	The curie temperature of iron is about	A. 250 <span style="color: rgb(84, 84,
84); font-family: arial, sans-serif; font-
size: small;">°C B. 500 <span style="color: rgb(84, 84,
84); font-family: arial, sans-serif; font-
size: small;">°C C. 750 <span style="color: rgb(84, 84,
84); font-family: arial, sans-serif; font-
size: small;">°C D. 1000 <span style="color: rgb(84,
84, 84); font-family: arial, sans-serif;
font-size: small;">°C
90	In the phenomenon of hysteresis	A. magnetism leads the magnetising current B. magnetism lags behind the magnetising current C. meganetism goes along the magnetising current D. none of them
91	Crystalline solids are in the form of:	A. Metals B. lonic Compounds C. Ceramics D. Both (A) and (B) E. All of these
92	The solids are classified as:	A. Metals B. Crystalline C. Amorphous D. Polymeric E. All except (A)
93	Zirconia is classified as:	A. Ceramic solid B. Ionic compound C. Metal D. Either (A) or (B) E. Either (B) or (C)
94	Each atom in a metal crystal vibrates about a fixed point with an amplitude that:	 A. Decrease the rise in temprature B. Is not affected by rise in temprature C. Increase with rise in temprature D. Both (B) and (C) E. None of these
95	The transition from solid to liquid is actually from:	A. Order to disorder B. Disorder to order C. Order to order D. Disorder to disorder E. None of these

96	The transition from solid state to liquid state is:	A. Abrupt B. Slow C. Continous D. Discontinous E. Both (A) and (D)
97	The force which maintain the strict long-range order between atoms of a crystalline solid is the:	A. Nuclear force B. Cohesive force C. Adhesive force D. Coulomb force E. None of these
98	The word amorphous means:	A. Without any structure B. With definite structure C. Regular arrangement of molecules D. Both (B) and (C) E. None of these
99	Amorphous solids:	 A. Have definite melting points B. Are called glassy solids C. Have no definite melting point D. Both (B) and (C) E. Both (A) and (C)
100	The pattern of crystalline solid is:	A. One dimesional B. Two dimensional C. Three dimensional D. None of these E. Either (A) or (B)
101	In a cubic crystal, All solids meet at:	A. 60 ^o B. 90 ^o C. 109 ^o D. 30 ^o E. 10 ^o
102	An ordinary glass gradually softens into a 'paste -like' state before it becomes a very viscous liquid. It happens almost at:	A. 800 ^o C B. 500 ^o C C. 300 ^o C D. 100 ^o C E. None of these
103	The arrangement or molecules or atoms in a crystalline solid can be studied by using:	 A. Chemical methods B. Neutrons C. X-ray techniques D. Copper atoms E. Both (A) and (B)
104	A unit cell is smallest basic structure which is:	A. One dimensional B. Two dimensional C. Three dimensional D. Four dimensional E. None of these
105	Tick the one which is not a crystalline solid:	A. Zirconia B. Glass C. Copper D. Ceramic solid E. An ionic compound
106	The temperature at which the vibrations become so great that structure of the Crystal breaks up, is called:	A. Critical temparature B. Temperature of vaporization C. Melting point D. Both (A) and (C) E. Both (A) and (B)
107	The whole structure obtained by the repetition of unit cells is called:	A. Crystal lattice B. Amorphous solid C. Polymeric solid D. Polysterne E. None of these
108	The pattern of NaCl particles have a shape which is :	A. Cubic B. Body centred cubic C. Simple cubic D. face centred E. Both (A) and (C)
109	In crystalline solids, atoms are held about their equilibrium positions depending upon the strength of:	A. Adhesive force B. Nuclear forces C. Inter atomic cohesive force D. Electromagnetic force E. None of these
110	The smallest three dimensional basic structure is called as:	A. An atom B. Unit cell C. Crystal lattice D. Polymer

111	Each atom in metal crystal:	A. Remains fixed B. Vibrates about a fixed point C. Moves randomly D. Rotates about center of a crystal E. None of these
112	When relatively simple molecules are chemically combined into massive molecules, the reaction is called:	 A. Fission reaction B. Fusion reaction C. Polymerization D. Any of these E. None of these
113	A structure of polymeric solid is:	 A. An ordered structure B. A disordered structure C. Intermediate between order and disorder D. Any of these E. None of these
114	Examples of polymeric substances are:	A. Plastic B. Synthetic rubbers C. Zirconia D. All of these F. Both (A) and (B)
115	Examples of crystalline solids are:	A. Cooper B. NaCl C. Zirconia D. Both (A) and (B) E. All of these
116	Polymers are the chemical combination of carbon with:	A. Nitrogen B. Oxygen C. Hydrogen D. All of these E. None of these
117	Tick the one which is not polymer solid:	A. Zirconia B. Polythene C. Nylon D. Synthetic rubber E. None of these

E. None of these