

ECAT Mathematics Chapter 8 Sequences and Series Online Test

Sr	Questions	Answers Choice
1	Which one represents a sequence	A. an B. Sn C. a(n) D. {an}
2	An indicated sum of terms of a sequence is represented by	A. Sn B. an C. S(n) D. {Sn}
3	An infinite sequence has no	A. nth term B. Last term C. Sum D. None of these
4	The formula an = a +(n-1)d for an A.P is called	A. nth term of an A.P B. Sum of first n terms C. A,M between a and b D. None of the above
5	The formula an = arn-1represents	A. nth term of G.P B. Sum of the first n terms C. G.M between a and b D. None of these
6	If G is a G.M between a and b then a,G,b are in	A. A.P B. H.P C. G.P D. None of these
7	The three consecutive numbers a, \sqrt{ab} ,b are in	A. G.P B. H.P C. G.M D. None of these
8	A Geometric Series is divergent only if	A. r >1 B. r ≥1 C. r =1 D. None of these
9	A Series which does not coverage to a Unique sum is called	A. Harmonic Series B. Oscillatroy Series C. Arithmetic Series D. None of these
10	A sequence whose reciprocal is an A.P is called	A. Oscillator B. H.P C. G.P D. None of these
11	A,G,H are in	A. A.P B. G.P C. H.P D. None of these
12	If x,y are two positive distinct numbers then	A. A>G>H B. A <g<h C. A=G=H D. None of these</g<h
13	If x,y are two -ve distinct numbers then	A. A>G>H B. A <g<h C. A=G=H D. None of these</g<h
14	If all members of a sequence are real numbers then it is called	A. A.P B. Real Sequence C. G.P D. None of these
15	an -an-1, \forall n∈N \land n>1 in an A.P is called	A. Common difference B. nth term C. Common ratio D. None of these

16	In an A.P,a +(n-a)d is	A. 1st term B. General term C. Last term D. None of these
17	If A is such that a,A,B are in A.P then A is called	A. A.M B. Common ratio C. Common difference D. None of these
18	For three consecutive terms in A.P middle term is called	A. A.M B. nth term C. Central term D. None of these
19	an - an-1 will be common difference in an A.P if	A. $n = 1 \forall n \in N$ B. $n \& gt; 1 \land n \in N$ C. $n \in Z$ D. None of the above
20	The sum of indicated terms of a sequence is called	A. Arithmetic seriesB. SeriesC. Harmonic seriesD. None of these
21	The sum of infinite numbers of terms of an arithmetic series is	A. Finite B. Infinite C. May or may not finite D. None of these
22	If Sn is a definite number as $n \to \infty,$ then the geometric series is	A. Convergent B. Divergent C. Oscillatroy D. None of these
23	An infinite arithmetic series is always	A. Convergent B. Oscillatory C. Divergent D. None of these
24	For an arithmetic series to be convergent it is necessary that the series has	A. Finite terms B. d<0 C. Infinite terms D. None of these
25	For an A.P common difference d	A. Can be zero B. May or may not zero C. Cannot be zero D. None of these
26	How many numbers are there between 103 and 750 which are divisible by 6	A. 125 B. 107 C. 108 D. 113
27	The sum of first 60 natural numbers is	A. 1830 B. 3660 C. 1640 D. 1770
28	The sum of all 2 digit number is	A. 4750 B. 3776 C. 4895 D. 4905
29	Which term of the A.P 5,8,11,24is 320	A. 104th B. 106th C. 105th D. 64th
30	The5thand 13th terms of an A.P are 5 and-3 respectively The first term of the A.P is	A. 1 B15 C. 9 D. 2
31	The nth term of an A.P is (3n+5) Its 75th term is	A. 26 B. 7 C. 21 D. Cannot be determined
32	The sides of a right angled triangle are in A.P The ratio of sides is	A. 1:2:3 B. 3:4:5 C. 2:3:4 D. 5:8:3
33	If #n = (n-5)2 + 5, then find #3 x #4.	A. 54 B. 12 C. 4

		D. 9
34	A function whose domain is a subset of natural numbers is called	A. Identity function B. Sequence C. Onto function D. Series
35	If a _n = 2n -3, write the first four terms	A3, -1, 1, 3 B. 1, 3, 5, 7 C1, 1, 3, 5 D. None of these
36	Question Image]
37	Find the next two terms of 7, 9, 12, 16,	A. 18, 20 B. 19, 22 C. 20, 25 D. 21, 27
38	The general term of a sequence is denoted by	A. a ₁ B. a _n C. n D. s _n
39	The general term of the A.P. is	A. $a \le b \le 1 \le b \le (n - 1) d$ B. $n + (a \le b \ge 1 \le b \le 0$ D. None of these
40	The difference of two consecutive terms of an A.P. is called	A. General term B. Common ratio C. Common difference D. None of these
41	-2, 1, 4, 7, is	A. Harmonic sequence B. Arithmetic sequence C. Geometric sequence D. Arithmetic series
42	Arithmetic mean between a and b is	
43	The n numbers $A_1, A_2, A_3, \dots, A_n$ are called an arithmetic means between a and b if a. $A_1, A_2, A_3, \dots, A_n$, b is	A. An arithmetic series B. An arithmetic sequence C. A geometric sequence D. A harmonic sequence
44	Sum of first n terms of an arithmetic series is	
45	Question Image	
46	Arithmetic mean between x - 3 and x + 5 is	A. x + 1 B. x + 2 C. x + 3 D. x + 4
47	Write the first four terms of the arithmetic sequence 5, 2, -1, is	A. 3 B4 C. 7 D. 1
48	Write the first four terms of the sequence if $a_n = (-1)^n n^2$	A1, 4, -9, 16 B. 1, -4, 9, 16 C. 1, 4, 9, 16 D. None of these
49		A. Arithmetic sequence B. Geometric sequence
	A number A is called the arithmetic mean between a and b if a, A, b is	C. Harmonic sequence D. Arithmetic sequence
50	The series obtained by adding the terms of an arithmetic sequence is called the	C. Harmonic sequence D. Arithmetic sequence A. Infinite series B. Harmonic series C. Geometric series D. Arithmetic series
50 51	The series obtained by adding the terms of an arithmetic sequence is called the The sum of n terms of a series is denoted by	A. Infinite series A. Infinite series B. Harmonic series C. Geometric series D. Arithmetic series A. d B. n C. S _n D. a _n
50 51 52	The sum of n terms of a series is denoted by The nth term of a G.P. is	C. Harmonic sequence D. Arithmetic sequence A. Infinite series B. Harmonic series C. Geometric series D. Arithmetic series A. d B. n C. S _n D. a _n A. a ₁ r ^{n<1sup> B. a₁rⁿ⁺¹ C. a₁rⁿ⁻¹ D. a₁r⁻ⁿ D. a₁r⁻ⁿ}

54	Geometric mean between a and b is	
55	G is geometric mean between a and b if a, G, b is	A. A.P. B. G.P. C. H.P. D. None of these
56	The numbers of G1, G2, G3 Gnare called n geometric means between a and b is a, G1, G2,G3, Gn, b are in	A. H.P. B. A.P. C. G.P. D. None of these
57	Find the geometric mean between 4 and 16	
58	Question Image	
59	Sum of n terms of a geometric series if r < 1 is	
60	No term of a geometric sequence can be	A. 0 B. 1 C. 2 D. 3
61	The common ration of a geometric sequence cannot be	A. 0 B. 1 C. 2 D. 3
62	If a_1 and r are the first term and the common ratio respectively then $(n + 1)$ th term of the G.P. is	A. 0 B. a ₁ r ⁿ⁻¹ C. a ₁ r ⁿ⁺¹ D. a ₁ r ⁿ
63	If a_1 , r are first term and the common ratio respectively then the sum of an infinite geometric series is	
64	The sum of an infinite geometric series exist if	A. r < 1 B. r > 1 C. r = 1 D. r = -1
65	The series obtained by adding the terms of a geometric sequence is called	A. Infinite seriesB. Arithmetic seriesC. Geometric seriesD. Harmonic series
66	Question Image	A. 0 B. 1 C. 2 D. 3
67	Find the sum of the infinite geometric series 2 + 1 + 0.5 +	A. 3.5 B. 3 C. 4 D. None of these
68	A sequence of number whose reciprocals form an arithmetic sequence is called	A. Geometric sequenceB. Arithmetic seriesC. Harmonic sequenceD. Harmonic series
69	No term of a harmonic sequence can be	A. 0 B. 1 C. 2 D. 3
70	Question Image	A. an A.P. B. a G.P. C. a H.P. D. None of these
71	The harmonic mean between a and b is	
72	H.M. between 3 and 7 is	
73	A number H is said to be the H.M. between a and b if a, H, b are in	A. A.P. B. G. P. C. H. P. D. None of these
74	$H_1,H_2,H_3,H_{\!\!\!\!n}$ are called n harmonic means between a and b if a, $H_1,H_2,H_3,H_{\!\!\!n}$ b are in	A. H.P. B. G.P. C. A.P. D. None of these
		A A D

75	If A, G, H are the arithmetic, geometric and harmonic means between a and b respectively then A, G, H are in	A. A. P. B. G. P. C. H. P. D. None of these
76	Question Image	
77	Question Image	
78	Question Image	
79	The 6th term of an arithmetic sequence whose first term is 3 and common difference in zero is	A. 18 B. 6 C. 3 D. 0
80	Question Image	A. 1, 1/2, 0 B. 1, 2, 1 C. 1, 2, 3 D. 1, 2, 0
81	Question Image	A. 2 B3/2 C. 1 D. 0
82	If a_1 , r and a_n are the first term, common ratio and the nth term respectively of a G. P. then a_n =	A. a ₁ r ⁿ B. a ₁ r ⁿ⁻¹ C. a ₁ r ⁿ⁺¹ D. a ₁ r
83	If $a_1 = 3$, $r = 2$, then the nth term of the G.P. is	A. 2.3 ⁿ⁻¹ B. 3.2 ⁿ C. 3.2 ⁿ⁺¹ D. 3.2 ⁿ⁻¹
84	The fifth term of the sequence a _n = 2n + 3 is	A. 13 B13 C. 8 D. 3
85	The third term of the sequence $a_n = (-1)^{n-1}(n-7)$ is	A. 8 B. 4 C4 D. 8
86	1 + 2 + 3 + + n =	
87	p, q, r and s are integers. If the A.M. of the roots of x2- $px + q2= 0$ and G.M. of the roots of x2- $rx + s2= 0$ are equal, then	A. q is an odd integer B. r is an even integer C. p is an even integer D. s is an odd integer
88	The next term of the sequence 1, 2, 4, 7, 11, is.	A. 15 B. 16 C. 17 D. 18
89	If a, b, c are in A.P., then 3 ^a , 3 ^b , 3 ^c are in	A. A.P. B. G.P. C. H.P. D. None of these
90	If a, b, c, d, e, f are in A.P.,then e-c is equal to	A. 2(c - a) B. 2(f - d) C. 2(d - c) D. d - c
91	An A.P. consists of n(odd terms) and its middle term is m. then the sum of the A.P. is	A. 2 mn B. 1/2 mn C. mn D. mn ²
92	5th term of a G.P. is 2, then the product of first 9 terms is	A. 256 B. 128 C. 512 D. None of these
93	The third term of a G.P. is 4, The product of first five terms is	A. 43 B. 45 C. 46 D. None of these
94	Given two numbers a and b. Let A denote the single A.M. between these and S denote the sum of n A.M.'s between them. Then S/A depends upon	A. n, a, b B. n, a C. n, b D. n

95	If $S_{\rm f}$ denotes the sum of the first r terms of a G.P., then $S_{\rm n},S_{\rm 2n^{-}}S_{\rm n},S_{\rm 3n^{-}}S_{\rm 2n}$ are in	A. A.P. B. G.P. C. H.P. D. None of these
96	If $a^{x}=b^{y}=c^{z}$ and a, b, c are in G.P. then x, y, z are in	A. A.P. B. G.P. C. H.P. D. None of these
97	The A.M. of two numbers is 34 and G.M. is 16, the numbers are	A. 2 and 64 B. 64 and 3 C. 64 and 4 D. None of these
98	If p, q, r and in A.P., a is G.M. between p and q and b is G.M. between q and r, then a^2 , q^2 , b^2 are in	A. A.P. B. G.P. C. H.P. D. None of these
99	Let S_n denote the sum of the first n terms of an A.P. If S_{2n} = 3 S_n : S_n is equal to	A. 4 B. 6 C. 8 D. 10
100	If x, y, z are the pth, qth, rth terms of an A.P. and also of G.P., then x^{y-z} . y^{z-x} . z^{x-y} eqals	A. xyz B. 0 C. 1 D. None of these
101	Question Image	A. 15/23 B. 7/15 C. 7/8 D. 15/7
102	Question Image	A. 12 B. 13 C. 14 D. 15
103	Question Image	A. A.P. B. G.P. C. H.P. D. None of these
104	99th term of the series 2 + 7 + 14 + 23 + 34 + is	A. 9998 B. 9999 C. 10000 D. None of these
105	If P, Q, R be the A.M., G.M., H.M. respectively between any two rational numbers a and b, then P - Q is	
106	Question Image	
107	Question Image	A. 1 B. 2 C. 3/2 D. 5/2
108	If the pth, qth, and rth terms of an A.P. are in G.P., then the common ratio of the G.P. is	
109	pth term of an H.P. is qr and qth term is pr then the rth term of the H.P. is	A. pqr B. 1 C. pq D. pqr ²
110	If a ₁ = a ₂ = 2, a _n = a _{n-1} - 1 (n > 2), then a ₅ is	A. 1 B. 0 C1 D2
111	If a, b, c are in AP., a, b, c are in G.P. then A, m ² b, c are in	A. A.P. B. G.P. C. H.P. D. None of these
112	Question Image	A. 2 ² - n - 1 B. 1 - 2 ⁻ⁿ C. n + 2 ⁻ⁿ -1 D. 2 ⁿ -1
113	Every term of a G.P. is positive and also every term is the sum of two preceding terms. Then the common ratio of the G.P. is	
114	The consecutive terms of a progressions are 30, 24, 20. The next term of the progression is	
115	If three unequal numbers p, q, r are in H.P. and their squares are in A.P., then the ration p :	

	ų : ris	
116	Let a_1 , a_2 , a_3 , a_4 and a_5 be such that a_1 , a_2 , and a_3 are in A.P., a_2 , a_3 and a_4 are in G.P and a_3 , a_4 and a_5 are in H.P. Then, a_1 , a_3 and a_5 are in	A. G.P. B. A.P. C. H.P. D. None of these
117	The 10th common term between the series 3+7+11+ and 1 + 6 +11 + is	A. 191 B. 193 C. 211 D. None of these
118	If b_1 , b_2 , b_3 , are in G.P. with first term unity and common ratio r, then the minimum value of b_1 - b_3 + b_5 is equal to	A. 3/4 B. 1/4 C. 1 D. None of these
119	Three consecutive terms of a progression are 30, 24, 20. The next terms of the progression is	
120	The third term of a G.P. is the square of first term. If the second term is 8, then the 6th term is	A. 120 B. 124 C. 128 D. 132
121	Question Image	
122	The sum of the squares of three distinct real numbers, which are in G.P., is S^2 if their sum is $\!$	
100		A. 1/2
123	Question Image	C. 1/4 D. 4
124	Question Image	
125	An A.P., a G.P. and a H.P. have the same first and last terms and the same odd numbers of terms, the middle terms of the three series are in	A. A.P. B. G.P. C. H.P. D. None of these
126	Let the sequence 1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, where n consecutive terms have the value n, then 1025th term is	A. 2 ⁹ B. 2 ¹⁰ C. 2 ¹¹ D. 2 ⁸
127	The number of divisors of 1029, 1547 and 122 are in	A. A.P. B. G.P. C. H.P. D. None of these
128	The number of divisors of 1029, 1547 and 122 are in	A. A.P. B. G.P. C. H.P. D. None of these
129	Sequence also called	A. Series B. Function C. progressions D. Elements
130	A sequence is a functions whose domain is a subset of the set of	A. Natural numbers B. Real numbers C. Whole numbers D. Rational numbers
131	If all members of a sequence are real numbers then it is called a	A. Series B. Function C. Real sequence D. Range
132	A sequence having no last term is called	A. arithmetic sequence B. Geometric sequence C. Finite sequence D. Infinite sequence
133	If the domain of sequence is finite set then the sequence is called	A. geometric sequence B. infinite sequence C. finite sequence D. arithmetic sequence
134	1,1/3,1/5,1/7,1/9 is a	A. geometric sequence B. finite sequence C. infinite sequence D. arithmetic series
		A Series

135	The element range of sequence are called	B. progression C. Members D. Terms
136	The 6th term of the sequence 7,9,12,16is	A. 27 B. 32 C. 20 D. 19
137	1/2,1/3,1/4,1/5is	A. a geometric sec B. an arithmetric series C. finite sequence D. an infinite sequece
138	What is the 26th term of the sequence, if its general term is $a_n = (-1)^{n+1}$	A. 2 B. 26 C. 27 D. 1
139	The sixth term of the sequence 1,3,12,60is	A. 1500 B. 72 C. 2160 D. 2520
140	The difference of two consecutive terms of an A.P is called the	A. Common difference B. Common ratio C. Geometric series D. Geometric mean
141	The fifth term of an A.P. Whose first term is 5 and common difference is 3, is	A. 20 B. 17 C. 25 D. 30
142	The seventh term of an A.P whose first term is P and common difference is q. is	A. P-6q B. P+6q C. P-4q D. P-nq
143	The sum of first twenty odd integers in A.P is	A. 400 B. 397 C. 404 D. 408
144	The 31 term of the A.P 5,2,-1is	A82 B. 82 C. 85 D85
145	The 26th term of the A.P -2,-4,10,is	A. 136 B136 C. 148 D148
146	if a9 =19,a9=31 are the 6th and 9th term of an AP. and d=4 is the common difference, then 18th term of the sequence is	A. 65 B. 67 C. 71 D. 75
147	How many term are there in the A.P, in which $a_1 = 11$, $a_n = 68$, $d=3$	A. 30 B. 27 C. 20 D. 21
148	The nth term of an A.P., is 12-4n. Its common difference is	A. 8 B. 4 C. 4 D. 16
149	The 7th term of the A.P 7,11,15,is	A. 24 B. 31 C. 26 D. 23
150	If a,b,c are in arithmetic progression, then 1/a,1/b.1/c are in	A. A.M B. G.M C. H.M D. G.P
151	If 6th term of a series in A.P, is -2 and 8th term is -8, the first term of the serie is	A. 13 B13 C. 18 D10
152	if a_1 =3, d=7 and a_n =59 , then the number of terms in A.P is	A. 7 B. 9 C. 11 D. 13

153	A number A is said to be the A.M between the two numbers a and b if a, A, b are in	A. A.M B. A.P C. G.P D. G.M
154	If 5,7 and 9 are A.Ms between a and b, then a and b is equal to	A. 2 and 12 B. 1 and 10 C. 3 and 11 D7 and 2
155	The sum of an indicated number of terms in a sequence is called	A. sequence B. progression C. Series D. Mean
156	A series consisting of an unlimited number of terms is termed as an	A. Finite sequence B. Infinite sequence C. ^{Infinite series} D. geometric sequence
157	In following question, a number series is given with one term missing. choose the correct alternative that will same pattern and fill in the blank spaces.1 , 4, 9, 16, 25, x	A. 35 B. 36 C. 48 D. 49