

ECAT Mathematics Chapter 6 Quadratic Equations Online Test

Sr	Questions	Answers Choice
1	Question Image	
2	The solution of equation $x^2 + 2 = 0$ in the set of real number is	A. Infinite set B. Singleton set C. Null set D. None of these
3	If a, β are the roots of the equation x2 - 8x + p = 0 and a2 + β 2= 40, then value of p is	A. 8 B. 12 C. 10 D. 14
4	If one root of $5x^2 + 13x + k = 0$ be the reciprocal of the other root the value of k is	A. 0 B. 2 C. 1 D. 5
5	The roots of the equation $4x - 3.2x+2 + 32 = 0$ would include	A. 1 and 3 B. 1 and 4 C. 1 and 2 D. 2 and 3
6	The two parts into which 57 should be divided so that their product is 782 are	A. 43,14 B. 34,23 C. 33,24 D. 44,13
7	If x - 1 is a factor of x4 - $5x^2$ + 4 then other factor is	A. $(x + 2)2(x - 1)$ B. $(x + 2)(x - 1)2$ C. $(x+2)(x2- x- 2)$ D. $(x + 2)2(x - 1)2$
8	(1+w)(1+w2)(1+w4)(1+w8)50 factors	A. 0 B1 C. 1 D. 2
9	A polynomial of arbitrary degree	A. $f(x) = o$ B. $f(x) = x$ C. $f(x) = a$ D. $f(x) = ax + b, a \neq 0$
10	The roots of $ax^2 + bx + c = 0$ are always unequal if	A. $b2 - 4ac = 0$ B. $b2 - 4ac \neq 0$ C. $b2 - 4ac \& gt; 0$ D. $b2 - 4ac \ge 0$
11	The sum of the roots of the equation $x^2 - 6x + 2 = 0$ is	A6 B. 2 C2 D. 6
12	The positive value of k for which the equation $x^2 + kx + 64 = 0$ has one of the roots 0	A. 4 B. 64 C. 8 D. All values of k
13	If a, β are the roots of the equation x2 + kx +12 = 0 such that a - β = 1, the value of k is	A. 0 B. ±1 C. ±5 D. ±7
14	Consider the equation $px^2 + qx + r = 0$ where p,q,r are real The roots are equal in magnitude but opposite in sign when	A. $q = 0, r = 0, p \neq 0$ B. $p = 0, qr \neq 0$ C. $r = 0, pq \neq 0$ D. $q = 0, pq \neq 0$
15	If the equation $x^2+2x-3=0$ and $x^2+3x-k=0$ have a common root then the non - zero value of k is	A. 1 B. 3 C. 2 D. 4
16	The condition for ax2 + bx c to be expressed as the product of linear polynomials is	A. b4 - 4ac =0 B. b4- 4ac ≥0 C. b4- 4ac ⁢0

		D. b4= 4ac
17	The expression $x^2 - x + 1$ has	A. One proper linear factor B. No proper linear factor C. Two proper linear factors D. None of these
18	The value of x for which the polynomials $x^2 - 1$ and $x^2 - 2x + 1$ vanish simultaneously is	A. 2 B. 1 C1 D2
19	$(x + a)(x + b)(x + c)(x +) = k$, $k \neq 0$ is reducible to quadratic form only if	A. a+b=c+d B. a+c=b+d C. a+d=b+c D. All are correct
20	If w+w2 is a root of $(x+1)(x+2)(x+3)(x+4) = k$, then	A. k=0 B. k=1 C. k=w D. k=w2
21	If a, β are the roots of ax2+bx+c=0,the equation whose roots are doubled is	A. ay2 +2by+c=0 B. ay2+2by+4c=0 C. ay2+2by+c=0 D. ay2+by+4c=0
22	The roots of ax2+bx+c=0 are	A. Rational \Leftrightarrow b2 -4 ac ≥ 0 B. Irrational \Leftrightarrow b2-4 ac > 0 C. Real \Leftrightarrow b2-4 ac $\neq 0$ D. Rational \Leftrightarrow b2-4 ac = 0
23	The roots of (b-c)x2+(c-a) x+a-b=0 are equal if	A. 2b = a+c B. 2a = b+c C. 2c = a+b D. a + b + c =0
24	The roots of px2 - (p-q)x-q=0 are	A. equal B. Irrational C. Rational D. Imaginary
25	The graph of a quadratic function is	A. Circle B. Ellipse C. Parabola D. Hexagon
26	The condition for polynomial equation $ax^2 + bx + c = 0$ to be quadratic is	A. a > 0 B. a < 0 C. a≠ 0 D. a≠ 0,b ≠ 0
27	Only one of the root of $ax^2 + bx + c = 0$, $a \neq 0$ is zero if	A. $c = 0$ B. $c = 0, b \neq 0$ C. $b = 0, c = 0$ D. $b = 0, c \neq 0$
28	lfα,β are non-real roots of ax2 + bx +c =0 (a,b,c∈ Q),then	A. $\alpha = \beta$ B. $\alpha\beta = 1$ C. $\alpha = \beta$ D. $\alpha = 1$
29	The roots of $(x - a)(x - b) = ab x^2$ are always	A. Real B. Depends upon a C. Depends upon b D. Depends upon a and b
30	Both the roots of the equation $(x - b) (x - c) + (x - c) (x - a) + (x - a) (x - b) = 0$ are always	A. Positive B. Negative C. Real D. None of these
31	If ax + bx + c =0 is satisfied by every value of x,then	A. b = 0,c = 0 B. c = 0 C. b = 0 D. a = b = c = 0
32	If the roots of $ax^2 + b = 0$ are real and distinct then	A. ab > 0 B. a = 0 C. ab < 0 D. a > 0,b > 0
33	if one root of the equation ix2 - 2(i + 1) x +(2 - i)= 0 is 2 - i then the other root is	Ai B. 2 + i C. i D. 2 - i
		A. Real and negative B. Non-real with negative real parts

R Non-real with negative real narte

34	If a > 0,b > 0, c > 0 then the roots of the equation $ax^{2}+bx + c = 0$ are	C. Real and positive D. Nothing can be said
35	Roots of the equation $x^2 - 7x + 10 = 0$ are	A. {2, 5} B. {-2, 5} C. {2,5} D. {-2,-5}
36	Roots of the equation x^2 + 7x + 12 = 0 are	A. {3, -4} B. {-3, 4} C. {3, 4} D. {-3, -4}
37	Roots of the equation $x^2 - x = 2$ are	A. {2, -1} B. {1, 0} C. {2, 1} D. {-2, 1}
38	$4^{1+x}+4^{1-x}=10$ is called	 A. Reciprocal equation B. Exponential equation C. Radical equation D. None of these
39	Question Image	 A. Reciprocal equation B. Exponential equation C. Radical equation D. None of these
40	x^{4} - 3 x^{3} + 3x + 1 = 0 is called	A. Reciprocal equation B. Exponential equation C. Radical equation D. None of these
41	w ¹⁵ =	A. 0 B. 1 C. w D. w ²
42	w ⁻¹ =	A. 0 B. 1 C. w D. w ²
43	w ⁴ =	A. 0 B. 1 C. w D. w ²
44	w ⁻¹² =	A. 0 B. 1 C. w D. w ²
45	w ¹¹ =	A. 0 B. 1 C. w D. w ²
46	Question Image	 A. Polynomial of degree 0 B. Polynomial of degree 1 C. Polynomial of degree 2 D. Polynomial of degree n
47	Question Image	A. Linear equation B. Quadratic equation C. Cubic equation D. None of these
48	Question Image	A. Polynomial of degree 0 B. Polynomial of degree 2 C. Quadratic equation D. None of these
49	5x ³ + 3x - is a	 A. Polynomial of degree 3 B. Polynomial of degree 2 C. Polynomial of degree 1 D. Polynomial of degree 0
50	The solution set of x^2 - 5x + 6 = 0 is	A. {1, 3} B. {2, 3} C. {1, 2} D. None of these
51	The quadratic formula is	
52	If a polynomial $P(x)$ is divided by x - a, then the remainder is	A. P(o) B. P(-a)

53	If x^3 + ax^2 - a^2x - a^3 is divided by x + a, then the remainder is	A. 0 B. a ³ C. 2a ³ D2a ³
54	2x ³ + 3x + 9 is a	 A. Polynomial of degree 3 B. Quadratic equation C. Cubic equation D. Polynomial of degree 2
55	If a polynomial $P(x)$ is divided by $x + a$, then the remiander is	A. P(a) B. P(-a) C. P(0) D. None of these
56	If x^3 + 4 x^3 - 2x +5 is divided by x - 1, then the reminder is	A. 8 B. 6 C. 4 D. None of these
57	If x^4 - 10 x^2 - 2x + 4 is divided by x + 3, then the reminder is	A. 1 B. 0 C. 4 D. None of these
58	If x^3-x^2+5x+4 is divided by x - 2, then the reminder is	A. 0 B. 2 C. 18 D. 14
59	If $3x^4 + 4x^3 + x - 5$ is divided by $x + 1$, then the reminder is	A. 0 B. 7 C7 D. 5
60	Question Image	A. c/a Bc/a C. b/a Db/a
61	If S and P are the sum and the product of roots of a quadratic equation, then the quadratic equation is	A. x ² + Sx - P = 0 B. x ² - Sx + P = 0 C. x ² - Sx - P = 0 D. X ² + Sx + P = 0
62	The roots of the equation ax^2 + bx + c = 0 are real and equal if	A. b ² - 4ac < 0 B. b ² - 4ac = 0 C. b ² - 4ac > 0 D. None of these
63	The roots of the equation ax^2 + bx + c = 0 are complex/imaginary if	A. b ² - 4ac < 0 B. b ² - 4ac = 0 C. b ² - 4ac > 0 D. None of these
64	The roots of the equation ax^2 + bx + x = 0 are real and distinct if	A. b ² - 4ac <0 B. b ² - 4ac = 0 C. b ² - 4ac > 0 D. None of these
65	Roots of the equation $x^2 + 2x + 3 = 0$ are	A. Real and equal B. Real and distinct C. Complex D. None of these
66	Roots of the equation x^2 + 5x - 1 = 0 are	A. Rational B. Irrational C. Complex D. None of these
67	Roots of the equation $2x^2 - 7x + 3 = 0$ are	A. Rational B. Irrational C. Complex D. None of these
68	Roots of the equation $9x^2$ - $12x + 4 = 0$ are	A. Real and equal B. Real and distinct C. Complex D. None of these
69	If one root of the equation x^2 - 3x + a = 0 is 2 then a =	A. 0 B. 1 C. 2 D. 3
70	The discriminant of the quadratic equation $ax^2 + bx + c = 0$ is	A. b ² + 4ac B. b ² - 4ac

U. None of these

0. 4ac - p² D. a²- 4ac

71	If the roots of 3x2+kx + 12 = 0 are equal then k =	
72	If w is a cube root of unity then $1 + w + w^2 = $	A. 1 B. 2 C. 0 D1
73	The roots of the equations will be equal if b ² - 4ac is	A. Positive B. Negative C. 1 D. Zero
74	The roots of the equation will be irrational if b ² - 4ac is	A. Positive and perfect square B. Positive but not a perfect square C. Negative D. Zero
75	If b^2 - 4ac is positive then the roots of the equation are	A. Real B. Imaginary C. Positive D. Negative
76	If b^2 - 4ac = 0 then the roots of the equation are	A. Real and distinct B. Real and equal C. Imaginary D. None of these
77	The product of cube roots of unity is	A. Zero B. 1 C1 D. None of these
78	For any integer k, w ⁿ = when n = 3k	A. 1 B. 2 C. 0 D4
79	w ²⁹ =	A. 0 B. 1 C. w D. w ²
80	w ⁷³ =	A. 0 B. 1 C. w D. w ²
81	w ²⁸ + w ³⁸ =	A. 0 B. 1 C. w D1
82	$(2 + w) (2 + w^2) = $	A. 1 B. 2 C. 3 D. 0
83	There are basic techniques for solving a quadratic equation	A. Two B. Three C. Four D. None of these
84	Question Image	
85	The product of the four fourth roots of unity is	A. 0 B. 1 C1 D. None of these
86	The polynomial x - a is a factor of the polynomial f(x) if and only if	A. $f(a)$ is positive B. $f(a)$ is negative C. $f(a) = 0$ D. None of these
87	Two quadratic equation in which xy term is missing and the coefficients of x^2 and y^2 are equal, give a linear equation by	A. Addition B. Subtraction C. Multiplication D. Division
88	If x^2 - 7x + a has remainder 1 when divided by x + 1, then a =	A7 B. 7 C. 0 D. None of these
		A5 R 5

89	If x - 2 is a factor of ax2- 12x + a = 2a, then a =	C. 0 D. 1
90	Find a if 1 is a root of the equation x^2 + ax + 2 = 0	A. 3 B3 C. 2 D. 0
91	Which of the following is a factor of x^3 - $3x^2$ + 2x - 6	A. x + 2 B. x + 3 C. x - 3 D. x - 4
92	Question Image	A. 0 B. 1 C. 2 D. None of these
93	Question Image	
94	Question Image	
95	Question Image	
96	Question Image	A1 B. 0 C. 2 D. 1
97	Question Image	A. 1 B1 C. 5 D. 2
98	The cube roots of 8 are	
99	Question Image	A. 0 B. 1 C. 2 D. 3
100	Question Image	A. 2 B. 4 C. 8 D. 16
101	Question Image	A. 4 B. 6 C. 8 D. 10
102	Question Image	
103	The condition for polynomial equation $ax^{2} + bx + c = 0$ to be quadratic is	
104	Question Image	
105	Question Image	
106	Both the roots of the equation $(x - b) (x - c) + (x - c)(x - a) + (x - a)(x - b) = 0$ are always	A. Positive B. Negative C. Real D. None of these
107	If $ax^2 + bx + x = 0$ is satisfied by every value of x, then	A. b = 0, c = 0 B. c = 0 C. b = 0 D. a = b = c = 0
108	If the roots of $ax^2 + b = 0$ are real and distinct then	A. ab > 0 B. a = 0 C. ab < 0 D. a > 0, b > 0
109	If one root of the equation ix ² - 2(i + 1) x +(2 - i) = 0 is 2 - i, then the other root is	Ai B. 2 + i C. i D. 2 - i
110	If a > 0, b > 0, c > 0, then the roots of the equation $ax^2 + bx + c = 0$ are	 A. Real and negative B. Non-real with negative real parts C. Real and positive D. Nothing can be said
111	The quadratic equation 8 sec ² θ - 6 sec θ +1 = 0 has	A. Infinitely many roots B. Exactly two roots C. Exactly four roots

		D. No roots
112	Question Image	A. b = c B. a = c C. a = c D. b = 0
113	If the roots of ax^{2} + bx + c =0 are equal in magnitude but opposite in sign, then	A. a = 0 B. b = 0 C. c = 0 D. None of these
114	The value of p for which both the roots of the equation $4x^2 - 20x + (25p^2 + 15p - 66) = 0$ are less than 2, lies in	
115	Question Image	
116	The roots of the equation $2^{2\chi}$ 10.2 ^x + 16 = 0 are	A. 2, 8 B. 1, 3 C. 1, 8 D. 2, 3
117	Question Image	A. n if n is even B. 0 for any natural number n C. 1 if in odd D. None of these
118	If $x^2 + px + 1$ is a factor of $ax^3 + bx + c$, then	A. a ² + c ² = -ab B. a ² - c ² = - ab C. a ² - c ² = ab D. None of these
119	Question Image	A. (a - c) ² = b ² = b ² = b ² = b ² + c ² C. (a + c) ² = b ² - c ² = D. (a + c) ² = b ²
120	The set of real roots of the equation $\log_{(5x+4)}(2x+3)^3 - \log_{(2x+3)}(10x^2+23x+12) = 1$ is	A. {-1} B. {-3/5} C. Empty set D. {-1/3}
121	The value of k (k > 0) for which the equation x^2 + kx + 64 = 0 and x^2 - 8x + k = 0 both will have real roots is	A. 8 B16 C64 D. 16
122	Question Image	A. Only one real solution B. Exactly three real solution C. Exactly one rational solution D. Non-real roots
123	Question Image	A. Rational B. Irrational C. Non-real D. Zero
124	If $2x^{1/3} + 2x^{-1/3} = 5$, then x is equal to	A. 1 or -1 B. 2 or 1/2 C. 8 or 1/8 D. 4 or 1/4
125	The equation (cos p - 1) x^{2+} x (cos p) + sin p = 0 in the variable x, has real roots, then p can take any value in the interval	A. (0, 2 <i>π</i>) B. (- <i>π</i>) C. (0, <i>π</i> , -0) C. (0, <) D. None of these

126	If the roots of x^2 + ax + b = 0 are non-real, then for all real x, x^2 + ax + b is	A. Negative B. Positive C. Zero D. Nothing can be said
127	Question Image	A. 1 B. 2 C. 0 D. 4
128	Question Image	A. (-1, 2) B. (-1, 1) C. (1, 2) D. {-1}
129	In a quadratic equation with leading co-efficient 1, a student reads the co-obtain the roots as - 15 and -4. The correct roots are	A. 6, 10 B6, -10 C. 8, 8 D8, -8
		A. Two real roots
130	Question Image	B. Two positive roots C. Two negative roots D. One positive and one negative root
131	Let the equation ax^2 - $bx + c = 0$ have distinct real roots both lying in the open interval (0, 1) where a, b, c are given to be positive integers. Then the value of the ordered triplet (a, b, c) can be	A. (5, 3, 1) B. (4, 3, 2) C. (5, 5, 1) D. (6, 4, 1)
132	If the roots of ax^2 - $bx - c = 0$ change by the same quantity, then the expression in a, b, c that does not change is	
133	If α , β are the roots of ax ²⁺ bx + c = 0 and α + h, β + h are the roots of px ²⁺ qx + r=0, then h =	
134	If the roots of ax^2 + bx + c = 0 (a > 0) be greater than unity, then	A. $a + b + c = 0$ B. $a + b + c \& gt; 0$ C. $a + b + c \& lt; 0$ D. None of these
135	Question Image	A. 15 B. 9 C. 7 D. 8
136	Question Image	
137	Question Image	A. Lies between 4 and 7 B. Lies between 5 and 9 C. Has no value between 4 and 7 D. Has no value between 5 and 9
138	For the equation $ x^2 + x - 6 = 0$, the roots are	 A. One and only one real number B. Real with sum one C. Real with sum zero D. Real with product zero
139	Root of the equation $3^{x-1}+3^{1-x}=$ is	A. 2 B. 1 C. 0 D1
140	If sin α and cos α are the roots of the equation px ² + qx + r =0, then	A. p ² - q ² + 2pr = 0 B. (p + r) ² = q ² - r ² C. p ² + q ² - 2pr = 0 D. (p - r) ² = q ² + r ²
141	If a $(p + q)^2$ + bpq +c = 0 and a $(p + r)^2$ + 2 bpr + c = 0, then qr equals	A. p ² + c/a B. p ² + a/c C. p ² + c/a D. p ² + c/a
142	A quadratic equation in \mathbf{x} is an equation that can be witten in the form	A. ax ² + b = 0 B. ax ³ +b ² +c=0 C. ax ² +bx+c=0 D. ax ³ +bx ³ +c=0
1/13	Another name of quadratic equation is	A. Polynomial B. 2nd degree polynomial

שרו		C. Linear equation D. simaltaneous equations
144	A quadratic equation has two	A. roots B. degree C. variables D. constants
145	The roots of the equation x2 +6x-7=0,are	A. 1 B. 2 C. 1 and -7 D7
146	the largest degree of the terms in the polynomials is called	A. terms of the polynomial B. degree of a polynomial C. co-efficient D. monomial
147	The solution of the quadratic equation $x^2 - 7x + 10=0$, is	A. 2 B. 5 C. 2,5 D. 7
148	The graph of the quadratic equation is	A. Straight line B. Circle C. Parabola D. elipse
149	In quadratic equation $f(x) = ax^2$, if a >0, then the graph of parabola	A. Opens up B. Opens down C. close up D. symmetric w.r.t.x.axis
150	In quadratic equation $y=ax^3 +bx+c$, if b and c are both zero then the graph is	A. Symmetric w.r.t.y-axis B. Symmetric w.r.t.x-axis C. Straight Line D. Circle
151	In quadratic equation, if the replacement of y with -y leaves the equation unchanged, then the graph is	A. Straight line B. Circle C. Hyperbola D. Symmetric w.r.t.0
152	The root of the quadratic equation are	A. 3 B. 2 C. 1 D. 4
153	If a parabola opens down, then its vertex is at the	A. Right of the parabola B. Left of parabola C. Lowest point on the parabola D. Highest point on the parabola
154	If $f(x) = ax^2$, and $a > 0$, then the lowest point on the parabola is called.	A. Vertex of parabola B. Co-ordinates of parabola C. Roots of the equation D. Coefficient of the equation
155	The standard parabolic form of the equation $f(x) = x^2 + 4x + 1$ is	A. x(x+4)+1 B. (x+2) ² -3 C. (x+4) ³ + 9 D. x(x-2) ² +1
156	The standard form of the quadratic function $f(x) = -x^2 + 4x + 2$, is	A. (x-2) ² +6 B(x-2) ² + 6 C. (x-3) ² +5 D. (x+4) ² -7
157	The minimum value of the quadratic function $f(x) = x^2 + 6x - 2$, is	A. 11 B. 6 C11 D. 13
158	The minimum value of the quadratic function $f(x) = 5 \times 2-11$, is	A11 B. 6 C7 D. 7
159	The vertex of the graph of the quadratic function $f(x) = x^2 - 10$, is	A. (0, -10) B. (-10,0) C. (10,0) D. (0,10)
160	The vertex of the graph of the quadratic function $f(x) = -x^2+6x+1$, is	A. (-3,10) B. (-3,-10) C. (3,10) D. (3,-10)
		A. 4

162The maximum value of the quadratic function $f(x) = 2x2-4x+7$, isA 3 B 5 C \cdot -3 D \cdot -5 D \cdot 163Which of the following is factor of $p(x) = 2x3 + 3x2 + 3x+2$?A set 1 B \cdot 2x+1 D \cdot 2x+1 D \cdot 2x+1 D \cdot D \cdot 164 $(x+1)$ is a factor ofA 2x-sup $2x3 + 3x2 + 3x+2$?A 2x-sup $2x3 + 3x2 - 5x+8$ C \cdot 4x-sup $2x3 + 3x2 - 5x+8$ C \cdot A 2x-sup $2x3 + 3x2 - 5x+8$ C \cdot C	161	The maximum value of the quadratic function $f(x) = -2x^2+20x$, is	B. 3 C. 50 D. 7
163 Which of the following is factor of $p(x) = 2x3 + 3x2 + 3x+2$? B. $2x+1$ 164 $(x-1)$ is a factor of A $2x + x_{1}p^{-3} - 5x_{1}p^{-3}$ 164 $(x-1)$ is a factor of A $2x + x_{1}p^{-3} - 5x_{1}p^{-3}$ 165 If $3x4 + 4x^{3} + x^{5}$ is divided by $x+1$, which of the following is the remainder A 7 165 If $3x4 + 4x^{3} + x^{5}$ is divided by $x+1$, which of the following is the remainder A 7 166 Which of the following is factor of x^{11+a11} , where n is an odd integer A xa 166 Which of the following is factor of x^{11+a11} , where n is an odd integer A $2x$ 167 If $x 2$ and $x-1$ both are factors of $x^{3} \cdot 3x^{3} + 2x \cdot 4p$, then P must equal to B $2x^{2}$ 168 The synthetic division method is only used to divide a polynomial by A quadratic equation B $2x^{2}$ 169 If a polynomial $p(x)$ is divided by $x-c$, then the remainder is A $p(x)$ 170 A polynomial $p(x)$ is divided by $x-c$, then the remainder is A $2x^{2}$ 171 Each complex cube root of unity is square of A isoff 172 Sum of all the four forth roots of unity is A 1 172 O usetion lenges A 0	162	The maximum value of the quadratic function $f(x) = 2x^2-4x+7$, is	B. 5 C3
164 $(x-1)$ is a factor of $3x e_{x} e_{y} 2^{-2} c_{y} (x_y) - 5x = 8$ C. $43x sup 2^{-2} c_{y} (x_y) - 5x = 8$ C. $43x sup 2^{-2} c_{y} (x_y) - 5x = 8$ C. $43x sup 2^{-2} c_{y} (x_y) - 5x = 8$ C. $43x sup 2^{-2} c_{y} (x_y) - 5x = 8$ C. $43x sup 2^{-2} c_{y} (x_y) - 5x = 8$ C. $43x sup 2^{-2} c_{y} (x_y) - 5x = 8$ C. $43x sup 2^{-2} c_{y} (x_y) - 5x = 8$ C. $43x sup 2^{-2} c_{y} (x_y) - 5x = 8$ C. $43x sup 2^{-2} c_{y} (x_y) - 5x = 8$ 	163	Which of the following is factor of $p(x) = 2x3 + 3x2 + 3x + 2$?	B. 2x+1 C. 3x+1
165If $3x4 + 4x3 + x5$ is divided by $x+1$, which of the following is the remainderB. -2 C. 6 D. 1166Which of the following is factor of $x11+a11$, where n is an odd integerA. xa B. $x+a$ 	164	(x-1) is a factor of	3x ² +9 B. 2x ³ -5x-8 C. 48x ²⁻ 46x-9
166Which of the following is factor of x11+a11, where n is an odd integerB. x+a C. $2x+a$ 167If x-2 and x-1 both are factors of $x^3-3x^3+2x-4p$, then P must equal toA. 1 B. 2 C. 0 D2168The synthetic division method is only used to divide a polynomial byA. quadratic equation B. binomial C. linear equation 	165	If $3x4 + 4x3 + x5$ is divided by $x+1$, which of the following is the remainder	B2 C. 6
167If x-2 and x-1 both are factors of $x^3-3x^3+2x-4p$, then P must equal toB. 2 C. 0 D2168The synthetic division method is only used to divide a polynomial byA quadratic equation B. binomial 	166	Which of the following is factor of x11+a11, where n is an odd integer	B. x+a C. 2x-a
168 The synthetic division method is only used to divide a polynomial by B. binomial 169 If a polynomial p(x) is divided by x-c, then the remainder is A. p(x) 169 If a polynomial p(x) is divided by x-c, then the remainder is A. p(x) 170 A polynomial P(x)has a factor (x-a)if P(a) = A. a 171 Each complex cube root of unity is square of A. itself 171 Each complex cube root of unity is square of A. itself 172 Sum of all the four forth roots of unity is B1 173 Ouestion Image A. 0	167	If x-2 and x-1 both are factors of x^3 -3 x^3 +2x-4p, then P must equal to	B. 2 C. 0
169If a polynomial $p(x)$ is divided by x-c, then the remainder isB. x-C C. c170A polynomial $P(x)$ has a factor $(x-a)$ if $P(a) =$ A. a B. x C. 1 D. 0171Each complex cube root of unity is square ofA. itself B. 1 C1 	168	The synthetic division method is only used to divide a polynomial by	B. binomial C. linear equation
170 A polynomial P(x)has a factor (x-a)if P(a) = B. x C. 1 171 Each complex cube root of unity is square of A. itself 171 Each complex cube root of unity is square of D. itself 172 Sum of all the four forth roots of unity is A. 1 173 Question Image A. 0	169	If a polynomial p(x) is divided by x-c, then the remainder is	B. x-c C. c
171 Each complex cube root of unity is square of B. 1 172 Sum of all the four forth roots of unity is A. 1 172 Sum of all the four forth roots of unity is D. the other 173 Question Image A. 0	170	A polynomial P(x)has a factor (x-a)if P(a) =	B. x C. 1
172 Sum of all the four forth roots of unity is B1 C. i D. 0 172 Question Image	171	Each complex cube root of unity is square of	B. 1 C1
	172	Sum of all the four forth roots of unity is	B1 C. i
	173	Question Image	