

ECAT Mathematics Chapter 22 Circle Online Test

Sr	Questions	Answers Choice
1	The set of all points in the plane that are equally distant from a fixed point is called a	A. parabola B. ellipse C. hyperbola D. circle
2	If a plane passes through the vertex of the cone, then the intersection is	A. an ellipse B. a parabola C. a hyperbola D. a point circle
3	A cone is generated by all lines through a fixed point and the circumference of	A. a circle B. an ellipse C. a hyperbola D. none of these
4	The fixed point which lies on the axis of the cone is called its	A. axis B. apex C. nappes D. axis
5	IF the cone is cut by a plane perpendicular to the axis of the cone, then the section is a	A. circle B. ellipse C. hyperbola D. parabola
6	The vertex of the cone is also called	A. nappes B. axis C. rulings D. apex
7	The generators of a cone are also called	A. rulings B. apex C. nappes D. ellipse
8	If the cutting plane is slightly tilted and cuts only one nappe of the cone, the resulting section is	A. an ellipse B. a circle C. a hyperbola D. a parabola
9	If the intersecting plane is parallel to a generator of the cone, but intersects its one nappe only, the curve of intersection is	A. a circle B. an ellipse C. a parabola D. a hyperbola
10	If the cutting plane is parallel to the axis of the cone and intersects both of its nappes, then the curve of intersection is	A. an ellipse B. a circle C. a parabola D. a hyperbola
11	If the cutting plane is parallel to the axis of the cone and intersects both of its nappes, then the curve of intersection is	A. an ellipse B. a circle C. a parabola D. a hyperbola
12	To study conics, Pappus used the method of	A. analytic geometry B. solid geometry C. Euclidean geometry D. none of these
13	Apollonius was a	A. rocket B. Muslim scientist C. Greek mathematicians D. method of finding conics
14	The equation: $x^2 + y^2 + 2gx + 2fy + c = 0$, represents	A. pair of lines B. a circle C. a general second degree equation D. a hyperbola
15	A second degree equation in which coefficients of x^2 and y^2 are equal and there is no product term xy represents	A. a parabola B. a circle C. an ellipse D. a pair of lines

16	The equation of the circle whose centre is (-3, 5) and having radius 7 is	A. (x-3) ² + (y+5) ² = 7 ² B. (x-3) ² + (y+5) ² = 7 ² C. (x-3) ² + (y-5) ² = 7 ² D. x ² +y ² +6x-10y-15=0
17	If three non-collinear points through which a circle passes are known, then we can find the	A. variables x and y B. value of x and c C. three constant f, g and c D. inverse of the circle
18	If the centre of the circle is the origin, then equation of the circle is	A. x ² + y ² = B. 2gx + 2fy - c = 0 C. x ² + y ² = r ² D. gx + fy - c/2 = 0
19	Question Image	
20	The equation of the circle with centre at (5, -2) and radius 4 is	
21	Question Image	
22	Question Image	A. 1 B. 2 C. 0 D. None of these
23	Question Image	
24	Question Image	
25	The area of the circle centred at (1, 2) and passing through (4, 6) is	
26	Question Image	
27	Question Image	B. a = b , h = 0 C. f = g, h = 0 D. h = h, c = 0
	Question Image Question Image	C. $f = g, h = 0$
27		C. f = g, h = 0 D. h = h, c = 0