Mathematics ECAT Pre Engineering Chapter 17 Functions and Limits Online Test | Sr | Questions | Answers Choice | |----|--|--| | 1 | The behavior of trigonometric function is called | A. Continuity B. Discontinuity C. Periodicity D. Smoothness | | 2 | The trigonometric function are continuous whenever | A. They are defined B. their limit exist C. Their period is given D. All are incorrect | | 3 | The domain and range of a trigonometric function can be allocate by their | A. graph B. Continuity C. Discontinuity D. Periods | | 4 | If f (x) is defined and continuous then f (x) is always | A. Rational function B. Trigonometric function C. Logarithmic function D. All are correct | | 5 | The domain of y = cos-1 x is | A∞ < x < ∞ B1≤ x≤ 1 C. x≤ -1 or x ≥ 1 D. None of these | | 6 | Point (2,0) lies on trigonometric function f(x)=; | A. sinx B. cosx C. tanx D. secx | | 7 | f (x) = x is a/an | A. Injective functionB. Bijective functionC. Surjective functionD. Implicit function | | 8 | The function $f: x \rightarrow y$ defined as $f(x) = \alpha \forall x \in X, \alpha \in y$ is called | A. Constant function B. Polynomial function C. Identity function D. Linear function | | 9 | The range of y=x2 + 1 is the set of non-negative real numbers except | A. 0≤ y < 1
B. 0 < y < 1
C. 0≤ y≤ 1
D. 0 < y≤1 | | 10 | $x = \sec\theta, y = \tan\theta$ are the parametric equations of | A. Circle B. Hyperbola C. Ellipse D. parabola | | 11 | Composition of functions is | A. Non-commutative (fg ≠ gf) B. non-associative [8(fh) ≠(8f)h] C. Commutative (fg = gf) D. f of-1≠ 1 | | 12 | If a tangent line touches the function $y = f(x)$ in more than one point then $y = f(x)$ is | A. Periodic B. Surjective C. Bijective D. Injective | | 13 | An even function is symmetric about the line | A. y = x
B. x = 0
C. y = -x
D. y = 0 | | 14 | The range of the function $f: x \rightarrow y$ is defined by | A. $\{x \mid y = f(x) \ \forall x \in X \land y \in y\}$
B. $\{(x,y) \mid y = f(x) \ \forall x \in X\}$
C. $\{y \mid y = f(x) \ \forall x \in X \land y \in y\}$
D. Y | | 15 | The only function which is both even and odd is | A. $f(x) = \alpha$
B. $f(x) = x$
C. $f(x) = 0$
D. Both A & Bamp; B | | 16 | The curve f(x,y) = 0 has a central symmetry if | A. $f(-x,-y)=f(x,y)$
B. $f(x,-y)=f(x,y)$
C. $f(-x,y)=f(x,y)$
D. $f(-x,-y)\neq f(x,y)$ | |----|--|--| | 17 | The function discontinuous at $x = 0$ is (1) tan x (II) cot x (III) sec x (iv)cosec x) | A. I & III B. I & IV C. II & IV D. II & III | | 18 | Domain of cosh x is | A. R
B. R -{0}
C. [1,∞)
D. [0,∞) | | 19 | The function f(x) = x is a/anfunction | A. Even B. Odd C. Both even as well as odd D. Neither even nor odd | | 20 | If f (x) = 2x+1 then fof (x) =; | A. 4x+3
B. 2x +3
C. 4x +1
D. None of these | | 21 | The set of points $\{(x,y) y=f(x), \forall x \in \}$ is called | A. Relation B. Graph of f C. Function D. All are correct | | 22 | If $f(\alpha) = b2$ and $g(c) = d$ where $c=b2$ then $(gof)(a)$ is | A. α
B. c
C. b
D. d | | 23 | Inverse of the function y-10x is | A. y=logx B. y=lnx C. x=10y D. x=10y | | 24 | The range of function f(x)=-x2+2x-1 is | A. R
B. (-∞,0]
C. (-∞,1]
D. [0,∞) | | 25 | A rule that assigns to each elements x in X a unique element y in Y is called a | A. domain B. range C. function D. none of these | | 26 | A rule or correspondence that assigns to each element x in X a unique element y in Y is called a function from | A. X to X B. X to Y C. Y to X D. none of these | | 27 | A function from X to Y is written as | B. f : X to Y
D. f : Y to Y | | 28 | A function from X to X is denoted as | B. f : X to Y
D. f : Y to Y | | 29 | Question Image | A. $x = f(y)$ B. $y = f(x)$ C. $x = f(x)$ D. $y = f(y)$ | | 30 | Question Image | A. range of f B. domain of f C. both (a) and (b) D. none of these | | 31 | Question Image | A. images B. pre-images C. constants D. none of these | | 32 | Question Image | A. image B. pre-image C. constant D. none of these | | 33 | If y is an image of x under the function f, then we write | A. $y = f(x)$
B. $x = f(y)$
C. $y = x$
D. none of these | | | | A. $f(x) = x < sup > 2 < /sup >$ B. $f(x < sup > 2 < /sup > 1 = x$ | | | | | | 34 | Question Image | C. $f(x) = x$
D. none of these | |----|-------------------------------------|--| | 35 | If $f(x) = x^2$ then $f(0)$ is | A. 0
B. 1
C. 2
D. none of these | | 36 | If $f(x) = x^2$ then $f(0)$ is | A. 0
B. 1
C. 2
D. none of these | | 37 | If $f(x) = x^2$ then $f(-2)$ is | A2
B. 2
C. 4
D4 | | 38 | If $f(x) = x^2$ then $f(2)$ is | A2
B. 2
C. 4
D4 | | 39 | If $f(x) = (-x)^2$ then $f(-2)$ is | A. 0
B. 2
C4
D. 4 | | 40 | If $f(x) = -x^2$ then $f(-2)$ is | A2
B. 2
C4
D. 4 | | 41 | If $f(x) = x^3$ then $f(-2)$ is | A2
B4
C8
D. 8 | | 42 | If $f(x) = -x^3$ then $f(-2)$ is | A2
B4
C8
D. 8 | | 43 | If $f(x) = x^2-x$ then $f(0)$ is | A. 0
B. 1
C. 2
D. 3 | | 44 | If $f(x) = x^2-x$ then $f(1)$ is | A. 0
B. 1
C. 2
D. 3 | | 45 | If $f(x) = x^2 - x$ then $f(2)$ is | A. 4
B. 6
C. 2
D. 0 | | 46 | If $f(x) = x^2 - x$ then $f(-2)$ is | A. 4
B. 6
C. 2
D. 0 | | 47 | Question Image | A. 2
C2
D. none of these | | 48 | Question Image | A. 2
B. 6 | | 49 | Question Image | A. 2
D. 0 | | 50 | Question Image | A. 0
B4
D. none of these | | 51 | Question Image | A. 2
B1
C. 8
D. not defined | | 52 | Question Image | A. 0
B. 3
C. 9
D3 | | | | A. 0 | | 53 | If $f(x) = x^3 - 2x^2 + 4x - 1$ then $f(0)$ is | B. 1
C1
D. none of these | |----|--|---| | 54 | Question Image | A1
B. 1
C. 2
D2 | | 55 | If $f(x) = x^3 - 2x^2 + 4x - 1$ then $f(2)$ is | A. 7
B16
C. 16
D9 | | 56 | If $f(x) = \cos x$ then $f(0)$ is | A. 0
B. 1
C. 1/2 | | 57 | Question Image | A. 0
B. 1
C. 1/2 | | 58 | If $f(x) = \tan x$ then $f(0)$ is | A. 0
B. 1
C. 1/2 | | 59 | Question Image | A. 0
B. 1
C. 1/2 | | 60 | Question Image | A. 0
B. 1
C. 2 | | 61 | Question Image | A. 0
B. 1
C. 2
D. 1/2 | | 62 | If $f(x) = x + 1$ then $f(z^2-1)$ is | A. z ² B. z ² + 2 C. z ² - 2 D. none of these | | 63 | If y=f(x) is a function then x is called | A. dependent variable B. independent variable C. constant D. none of these | | 64 | If y=f(x) is a function then y is called | A. dependent variable B. independent variable C. constant D. none of these | | 65 | $f(x) = 2x^2 + 3x + 5 \text{ is a}$ | A. trigonometric function B. algebraic function C. exponential function D. logarithmic function | | 66 | $f(x) = \sin x + \cos^2 x \text{ is}$ | A. trigonometric function B. algebraic function C. exponential function D. logarithmic function | | 67 | $f(x) = \log x + 3 \text{ is a}$ | A. trigonometric function B. algebraic function C. exponential function D. logarithmic function | | 68 | $f(x) = 2^{x} + 3 \cdot 2^{2x} + 5$ is | A. trigonometric function B. algebraic function C. exponential function D. logarithmic function | | 69 | f(x) = C is | A. identity function B. constant function C. linear function D. quadratic function | | 70 | Question Image | A. quadratic function B. constant function C. linear function D. exponential function | | 71 | Question Image | A. quadratic function B. constant function C. trigonometric function D. linear function | | 72 | f(x) = x is | A. trigonometric function B. exponential function C. quadratic function D. identify function | |-----|---|--| | 73 | f(x) = 1 is | A. identity function B. constant function C. linear function D. quadratic function | | 74 | In common logarithm the base is | A. 1
B. 0
C. 10
D. e | | 75 | In natural logarithm the base is | A. 1
B. 0
C. 10
D. e | | 76 | f(x) = ax + b will be a constant function if | A. a = 1 , b = 1
B. a = 1 , b = 0 | | 77 | f(x) = ax + b will be an identity function if | A. a = 1, b = 1
B. a = 1, b = 0 | | 78 | sin h x = | | | 79 | tan h x = | | | 80 | sec h x = | | | | | A. sin h x B. cos h x | | 81 | Question Image | C. tan h x D. cot h x | | 82 | Question Image | A. sin h x B. cos h x C. tan h x D. cot h x | | 83 | Question Image | A. sin h x B. cos h x C. sec h x D. cosec h x | | 84 | Sin h ⁻¹ x = | | | 85 | Question Image | | | 86 | Question Image |] | | 87 | Question Image | | | 88 | Question Image | | | 89 | Question Image | | | 90 | Question Image | A. 0 B. 1 C1 D. none of these | | 91 | Question Image | | | 92 | Question Image | | | 93 | Question Image | | | 94 | Question Image |] | | 95 | Question Image | | | 96 | Question Image | | | 97 | Question Image | | | 98 | Question Image | | | 99 | Question Image | | | 100 | Question Image | | | | n#: I | 1 | | 101 | Question image | | |-----|---|---| | 102 | Question Image | A. 0
B. 1
D. none of these | | 103 | Question Image | A. 0
B. 1
D1 | | 104 | Question Image | A. 0
B. 1
C1
D. none of these | | 105 | Question Image | A. 0
B. 1
D1 | | 106 | Question Image | | | 107 | Question Image | | | 108 | Question Image | A. [0,1[
B. [0, 1]
C.]0, 1[
D. None of these | | 109 | Question Image | A. 2
B. 4
C. 8
D. 12 | | 110 | Question Image | A. One-to-one and onto B. One-to-one but not on to C. Onto but not one-to-one D. Neither one-to-one nor onto | | 111 | Question Image | A. <i>¬π</i>>/span> B. <i style="text-align: center;">2π</i> C. <i style="text-align: center;">π/2</i> D. None of these | | 112 | The period $\sin^2\!\! heta$ is | A. <i style="text-align: center;">π-sup>2</i> B. <i style="text-align: center;">π</i> C. 2 <i style="text-align: center;">π</i> D. <i style="text-align: center;">π</i> center;">π | | 113 | The period of the function $f(x) = \sin^4 x + \cos^4 x$ is | A. <i>π</i>> B. <i>π</i> /2 C. 2 <i>π</i> /2 D. None of these | | 114 | The periods of the function $f(x) = x[x]$ is | A. 1 B. 2 C. Non periodic D. None of these | | 115 | π is the period of the function | A. $ \sin x + \sin x $
B. $\sin < \sup > 4 < / \sup > x + \cos x$
C. $\sin (\sin x) + \sin (\cos x)$
D. None of these | | 116 | Which of the following function form 1 to itself are bi-jective | A. F(x) = x + 3
B. F(x) = x ⁵
C. F(x) = 3x + 2
D. F(x) = x ² + x | | | | | | 117 | Question Image | | |-----|--|---| | 118 | Question Image | A. One-one but not onto B. One-one and onto C. Onto but not one-one D. Neither one-one nor onto | | 119 | Question Image | A2
B1
C. 1
D. 2 | | 120 | If $f(x) = x^3 - 2x^2 + 4x - 1$, then $f(-2) = ?$ | A. 0
B25
C. 5
D. 45 | | 121 | Question Image | A. 0
B2
C. 1
D. 4 | | 122 | $p(x) = 2x^4 - 3x^3 + 2x - 1$ is polynomial of degree | A. 1
B. 2
C. 3
D. 4 | | 123 | Which is not included in the domain of cos ⁻¹ x | A. 0
B. 1
C1
D. 2 | | 124 | Which is an explicit function | A. y = x ² + 2x - 1 B. x ² + xy + y ² = 2 C. x ² + y ² = xy + 2 D. All are | | 125 | Question Image | | | 126 | The domain of f(x) = log x is | A. [0, <i>∞</i>] B. (0, <i>∞</i>) C. [0, <i>∞</i>] D. [<i>∞</i> , <i>∞</i> , <i>∞</i> , <] | | 127 | A function F(x) is called even if | A. $F(x) = F(-x)$
B. $F(x) = F(-x)$
C. $F(x) = -F(x)$
D. $2F(x) = 0$ | | 128 | The range of inequality x + 2 > 4 is | A. (-1, 2) B. (-2, 2) C. (1, <i>></i>>) D. None | | 129 | Question Image | A. 1
B. 0
C2 | | | | D. 3 | |-----|--|---| | 130 | Graph of the question $x^2 + y^2 = 4$ is | A. A circle B. An ellipse C. A parabola D. A square | | 131 | Domain of y = scs x is | A. All real numbers except $\pi/2 + n^*\pi$ B. R C. All negative integers D. None of these | | 132 | The area of circle of unit radius = | A. 0 B. 1 C. 4 D. π | | 133 | Question Image | A. 0 B. 1 C. 8 D. <i>></i>>>>>>> | | 134 | Question Image | A. 3/4 B. r C. v D. None of these | | 135 | Question Image | A. Does not exist because f is unbounded B. Is not attained even though f is bounded C. Is equal to 1 D. Is equal to -1 | | 136 | Question Image | A. R/[0,4] B. R/(0,4) C. (0,4) D. [0,4] | | 137 | Question Image | A. (1,7/3) B. (1, 7/5) C. (1, 11/7) D. (1, 3/5) | | 138 | Question Image | A. 1/8 B. 1/2 C. 1/4 D. 1/6 | | 139 | Question Image | A. 2
B. 1
C. 5
D. 0 | | 140 | if the value of the sphere, $v = 4/3\pi r^2$, then the which of the following statement is true? | A. r is the function of v B. v is the function of π C. π is independent variable D. None of these | | 141 | A function from A to B is denoted by | A. f: $A \rightarrow B$
B. f: $B \rightarrow A$
C. f: $\rightarrow A : B$
D. f $\rightarrow A \rightarrow B$ | | 142 | If a variable y dependents on a variable x in such a way that each value of x determines exactly one value of y , then we say that | A. x is function of yB. y is a function of xC. y is independent variableD. x is real valued function | | 143 | The domain of $y = \sqrt{(x^2-9)}$ is | A. R
B. (0 , +∞)
C. (-∞ , -3) ∪ (3 , +∞)
D. (0 ,∞) | | 144 | In the function f: A□B, the elements of a are called | A. Images B. Pre-images C. ranges D. Parameters | | | | A. R | | 145 | The domain the function : $f(x) = x^2$ is given by | B. Set of all non-negative Real numbers C. R ⁻¹ D. None of these | |-----|--|---| | 146 | The domain of the function x/x^2 -4 is given by | A. R
B. R + 2
C. [R - (<u>>+</u> 2)
D. R-4 | | 147 | If the domain of the function f: $x = 2x^3 + 1$ is $\{-1,2,3\}$, the range of the function is | A. {3,2,5}
B. {1,3,9}
C. {-1,-2,-3}
D. {3,9,19} | | 148 | invented a symbolic way to write the statement "y is a function of x" as y= $f(x)$ | A. Leibniz B. Newton C. Euler D. None of these | | 149 | Every relation, which can be represented by a linear equation in two variables, represents a | A. Relation B. Cartesian product C. Function D. Graph | | 150 | The value of x which is unchanged by the mapping in the function defined by f ; $x \square x^2 + 5x - 5$ for $x \triangleright 0$ is | A. 1
B. 5
C5
D1 | | 151 | If x is an image of y under the function f. This can be written as | A. $y = f(x)$
B. $f(x) = 0$
C. $x = f(y)$
D. $f(y) = 0$ | | 152 | What is range of the function g (x) = $ x-3 $? | A. [0,∞)
B. (0,∞)
C. (-∞,3]
D. [0,∞) | | 153 | The largest possible domain of the function: $y=\sqrt{(x\)}$ is: | A. (0,∞)
B. 12
C. (3, 12)
D. (3,∞) | | 154 | For $f(x) = x^2 + px + 1$, if $f(3) = 3$ then $P =$ | A. 3/7
B2/5
C7/5
D7/3 | | 155 | For $f(x) = x^2$, what is the value of $f(a) + f(-a)$ in terms of a? | A. 3a2
B. 2a2
C. 2a
D7a | | 156 | If the function y=2x-3, what is the preimage of 11? | A. 11
B. 7
C. 5
D. 2 | | 157 | if $f(x) = x^3 - 3x^2 + 5x - 1$, then $f(-\sqrt{2}) =$ | A. 7+7√2
B. 3+3√2
C7-7√2
D3-3√2 | | 158 | Express the perimeter P of square as a function of its area A? | A. $P = 4\sqrt{A}$
B. $P = \sqrt{A}$
C. $P = 2A$
D. $P = \pi \sqrt{A}$ | | 159 | A function in which the variable appears as exponent is called: | A. An identity function B. A logarithmic function C. an exponential function D. A rational function | | 160 | A function of the form $p(x)/Q(x)$ is called: | A. Rational function B. Logarithmic function C. Exponential function D. Hyperbolic function | | 161 | xy= 2 is: | A. a constant function B. an identity function C. an improper function D. implicit function | | 162 | A function f is said to be an even if f(-x) = | A. 0
B. 1
C. f(x)
Df(x) | | 163 | $f(x) = \sin x is$: | A. an odd function B. an even function C. an implicit function D. an exponential function | |-----|------------------------------|---| | 164 | $f(x) = x^3 is:$ | A. an odd function B. an even function C. an implicit function D. a quadratic funtion | | 165 | $\cos h^2 x + \sin h^2 x$ | A. an even functionB. an odd functionC. an even and implicit functionD. neither even nor a odd | | 166 | f(x) = x3-x/x2+1 is: | A. an even functionB. an odd functionC. an even and implicit functionD. neither even nor a odd | | 167 | $f(x) = 3x^4 - 2x^2 + 7$ is: | A. an even function B. an odd function C. an even and implicit function D. neither even nor a odd | | 168 | $f(x) = 3x/x^2 + 1$ is: | A. an even function B. an odd function C. an even and implicit function D. neither even nor a odd |