

ECAT Mathematics Chapter 1 Number System Online Test

Sr	Questions	Answers Choice
1	If a is any real number and a = a is called	A. symmetric property B. Trichotomy Properties C. Transitive Property D. Reflexive Properties
2	The order axioms are satisfied by set of	A. C B. C and R C. R D. None of these
3	Any recurring decimal represents a	A. Irrational no B. Integer C. Rational no D. None of these
4	A prime number can be a factor of a square only if it occurs in the square at least	A. Once B. Thirce C. Twice D. None of these
5	$\sqrt{x} = $ if is a prime number	A. Rational no B. Natural no C. Irrational no D. Complex no
6	$\forall x, y \in R$, either x = y or x > y or x < y is	A. Transitive property B. Reflexive property C. Trichotomy property D. None of these
7	∀a,b,c∈R and c>0,then	A. a>b ⇒ ac < bc B. a>b ⇒ ac > bc C. a <b ac="" ⇒=""> bc D. None of these
8	$\forall x,y,z \in R$ and z 0,then	A. x > y ⇒ xz > yz B. x <y <="" xz="" yz<br="" ⇒="">C. x < y ⇒ xz > yz D. None of these</y>
9	$\forall x,y \in R \text{ and } x < 0, y < 0, \text{ which one is true}$	A. xy < o B. xy = o C. xy > o D. None of these
10	2.333is a	A. Irrational no B. Complex no C. Rational no D. None of these
11	A non-terminating non_recurring decimal represents an	A. Irrational no B. Both a & D. Rational no D. None of these
12	If in a set of real no a is multiplicative identity then	A. a,a = a ² B. a,a = 1 C. a,a = 0 D. None of these
13	If in a set of real no a is additive identity then	A. a+a = 2a B. a+a = 1 C. a+a = 0 D. None of these
14	The set {0,-1} hold closure property under	A. Addition B. Both a & D; c C. Multiplication D. None of these
15	The square roots of negative numbers is called	A. Real no B. Complex no C. Positive no D. Negative no

16	A subset of set of complex number whose elements are of the form $(a,0)$ is called	A. Real number B. Complex number C. Rational number D. Irrational number
17	$\forall z \in C$, multipliucative is	A. (1,1) B. (1,0) C. (0,1) D. None of these
18	If $z_1 = 1 + 2i$, $z_2 = 3 + 4i$ then	A. z ₁ > z ₂ B. z ₁ = z ₂ C. z ₁ < z ₂ D. None of these
19	For any real numbers x,y,xy=o ⇒	A. $x \neq 0 \land y \neq 0$ B. $x = 0 & \text{nbsp}; \lor y = 0$ C. $x = 0$ D. $y = 0$
20	$\forall a,b,c \in \mathbb{R}, a > b \land b > c \Rightarrow a > c \text{ is}$	A. Trichotomy property B. Transitive property C. Symmetric property D. Additive property
21	$\forall x,y \in R \text{ and } x > 0$, $y > 0$, if $x > y$	D. None of these
22	If z=(x,y) then z has no multiplicative inverse when	A. $x \neq 0$, $y = 0$ B. $x = 0$, $y = 0$ C. $x = 0$, $y = 0$ D. None of these
23	If $z = (x,y)$, then $z = $	A. (-x,y) B. (x,-y) C. (-x, -y) D. None of these
24	Question Image	
25	If $z_1 = (a,b)$, $z_2 = (c,d)$, then $z_1 z_2 =$	A. (ac,bd) B. (ac+bd, ad-bc) C. (ac-bd, ad+bc) D. (ac-bd, ad-bc)
26	<i>i</i> is equal	A. (1, 0) B. (0, 1) C. (1, 1) D. (0, 0)
27	r̄(4n+2) =	A. 1 B. i C1 Di
28	Question Image	D. None of these
29	Question Image	
30	Question Image	
31	Question Image	
32	Question Image	
33	Question Image	
34		
35	Question Image Question Image	
36	Question Image	
37	Question Image	
38	Question Image	
38	Question Image Question Image	

71	The set of flaterarile. Io Globed under	C. difference D. division
42	Question Image	
43	Question Image	
44	Question Image	
45	Question Image	
46	Question Image	
47	Question Image	A. 1 Bi C. i D. 0
48	Question Image	
49	Question Image	
50	Question Image	A8 B. 8 C. 8i D. 32
51	Question Image	
52	Question Image	
53	Question Image	A. 1 B. 3 C. 2-i D1
54	Question Image	B. 1 D1
55	Question Image]
56	Question Image	A. are real no B. both are not real C. are imaginary no D. both are imaginary
57	Question Image	
58	Question Image	
59	The set of rationals numbers between 0 and I is	A. Finite B. Null set C. Infinite D. None of these
60	0 (zero) is	A. An irrational numberB. A rational numberC. A negative integerD. A positive number
61	6 is	A. A prime integarB. An irrational numberC. A rational numberD. An odd integer
62	√23 is	A. A rational number B. A irrational number C. An even integer D. A factor of 36
63	Every prime number is also	A. Rational number B. Even number C. Irrational number D. Multiple of two numbers
64	The value of x and y when $(x + iy)2 = 5 - 4i$	A. x = 2, y = -1 B. x = -2, y = 1 C. x = 2, y = -i D. x = 2, y = 2
65	If $Z = (1,2)$, then $Z^{-1} = ?$	A. (0.2, 0.4) B. (-0.2, 0.4) C. (0.2, -0.4) D. (-0.2, -0.4)
		A. √3 i

66	if Z1 = 1+i, Z2= 2+3i, then Z2 -Z1 =	B. √7 C2-i D. √5
67	If $z_1 = \sqrt{-36}$, $z_2 = \sqrt{-25}$, $z_3 = \sqrt{-16}$ then	A. 15 B. 15i C15i D15
68	The equation x +4 = x has solution	A. x = -2 B. x = 2 C. x = -4 D. x = 4
69	What is the conjugate of -7 -2i?	A7 + 2i B. 7 +2i C. 7 -2i D. √53
70	The value of i ⁴ⁿ⁺¹	A. 1 B1 C. i D. i ²
71	The square root of 2i - 20i is	A. ±(5 - 2i) B. ±(5+2i) C. (5 - 2i) D. None of these
72	Geometrically the modulus of a complex number represents its distance from the	A. Point (1,0) B. Point (0,1) C. Point (1,1) D. Point (0,0)
73	The set {1,2,3,4} is called	A. Set of natural numbersB. Set of whole numbersC. Set of rational numberD. Set of irrational numbers
74	QUQ, =	A. N B. R C. W D. Z
75	The symbol of irrational is	A. W B. N C. Q D. Q <i>'</i>
76	√25 is a number	A. Rational B. Irrational C. Natural D. Odd
77	√2 is a number	A. Rational B. Irrational C. Even
78	202.04 is an example of	D. Odd A. Recurring decimals B. Non-recurring decimals C. Terminating decimals D. None of these
79	If ∀a,bεR,then a +bε R is a property	A. Closure law of addition B. Associative law of addition C. Additive inverse D. Additive identity
80	∀ a ε R ∃ o ε R such that a + v = 0 + a = a is property of	A. Commutative law of addition B. Associative law of addition C. Additive identity D. Additive inverse
81	Associative law of multiplication	A. $ab - ba$ B. $a(bc) = (ab) c$ C. $a(b + c) = ab + ac$ D. $(a + b)c = ac + bc$
82	$a.a^{-1} = a^{-1}.a = 1$ is a	A. Commutative law of multiplication B. Multiplicative identity C. Associative law of multiplication D. Multiplicative inverse
83	∀a,b ε R, ab = be is a	A. Commutative law of multiplication B. Closure law of multiplication C. Associative law of multiplication D. Multiplicative identity

84	∀a,b, c ε R,a +c = b + c = > a = b	A. Reflexive property B. Symmetric property C. Cancellations property w.r.t. addition D. Transitive property
85	\forall a,b, c ϵ R ac = bc \Rightarrow a = b, c \neq 0 is a	A. Symmetric property B. Cancellation property w.r.t multiplication C. Reflexive property D. Transitive property
86	If a > b or a < b than a = b is a	A. Additive property B. Transitive property C. Trichotomy property of inequality
87	a >b, b >c ⇒a >c is a	A. Multiplicative property B. Additive property C. Trichotomy property D. Transitive property of inequality
88	a >b ⇒a +c >b +c is known as	A. Trichotomy property B. Additive property of inequality C. Transitive property D. Multiplicative property
89	(a-1)-1 =	A. a-1 B. a Ca D. None of above
90	$(\sqrt{3}+\sqrt{5})+\sqrt{7}=\sqrt{3}+(\sqrt{5}+\sqrt{7})$ property used in above is	A. Commutative property of addition B. Closure property of addition C. Additive inverse D. Associative property w.r.t to adition
91	The property used in -3 <-2 ⇒0 <1	A. Commutative property B. Additive property of inequality C. Additive inverse D. Additive identity
92	<i>i</i> =	A. √1 B. √2 C. √-2 D. √-1
93	In (x + iy) x is the known as	A. Imaginary part of complex number B. Real part of complex number C. Complex number D. None of above
94	In (x +iy) y is called as	A. Imaginary part B. Complex number C. Real part D. None of above
95	i ³ =	A1 B. i Ci D. 1
96	(a +bi) -c (c +di) =	A. (a +b) = (c +d) B. (a +c) + i(b +d) C. (a -c) + (c -d) <i>i>i</i> D. (a -c) + (b -d) <i>i</i>
97	The conjugate of $\sqrt{5}$ <i>i</i> is	A. √5 B√5 i C. i D. 5i
98	(a,b) +(-a,-b) =	A. (0,0) B. (a,b) C. (-a,-b) D. (1,1)
99	$(a,0) \times (c,0) =$	A. (0,ac) B. (ac,0) C. (0,0) D. (a,c)
100	<i>i</i> ² =	A. 1 B. 2 C1 D. 0
101	i ⁹ =	A. i ² B1 C. 1

		D. i
102	√-1 b=	A. b B. 2 C. 2b D. None of these
103	(7,9) +(3,-5) =	A. (4,4) B. (10,4) C. (9,-5) D. (7,3)
104	The polar form of complex number x ≠ I y =	A. r $cos \theta + r sin$ θ B. $r cos \theta + is sin$ θ C. $cos \theta + r sin$ θ D. $i cos \theta + i sin$ θ
105	i ¹⁰¹ =	A. i B. i ² Ci D1
106	If $Z_1 = 1 + i$, $Z_2 = 2 + 3i$, then $ Z_1 - Z_2 = ?$	A. √5 B. √7 C1-2i D. √3
107	Which element is the additive inverse of (a,b) in Complex numbers	A. (a,0) B. (0,b) C. (a,b) D. (-a,-b)
108	What is the conjugate of -6 -i	A6 +i B. 6 + i C6 -i D. 6 -i
109	√(-1b) =?	A. b i Bi b C. b2 D. i√b
110	Multiplicative inverse of "1" is	A. 0 B. ±1 C. 1 D. {0,1}
111	In set builder notation the set {0,1,2,100} can be written as	A. $\{x \mid x \in B\ \land x \le 100\}$ B. $\{x \mid x \in W\ \land x\ \< 101\}$ C. $\{x \mid x \in Z \land x\ \< 101\}$ D. The set of first 100 whole numbers
112	Total number of subsets that can be formed out of the set {a,b,c} is	A. 1 B. 4 C. 8 D. 12
113	If a set S contains n elements then P (S) has number of elements	A. 2 ⁿ B. 2 ⁿ² C. 2.n D. n ²
114	Additive inverse of - a - b is	A. a Ba + b C. a - b D. a + b
115	If $A = \{x \mid x \in R \land x^2 - 16 = 0\}$ then $A =$	A x B. Infinite set C. Φ D. {-4,4}
116	The identity element with respect to subtraction is	A. 0 B. 1 C1 D. Does not exist
117	Multiplicative inverse of 0 is	A. 0 B. 1 C. ±1 D. Does not exist
118	Decimal part of irrational number is	A. Terminating B. Repeating only C. Neither repeating nor terminating D. Repeating and terminating

119	Question Image	A. A complex number B. A rational number C. A natural number D. An irrational number
120	π is	A. A complex number B. A rational number C. A natural number D. An irrational number
121	3/4 is	A. An odd number B. An even number C. A natural number D. A rational number
122	Question Image	A. A rational number B. An irrational number C. An odd number D. A prime number
123	Question Image	A. A rational number B. A natural number C. An irrational number D. An integer
124	O is	A. A positive integer B. A negative integer C. A natural number D. An integer
125	1/3 is	A. A prime number B. An integer C. A rational number D. An irrational number
126	Question Image	A. A prime number B. An integer C. A whole number D. An irrational number
127	Question Image	A. A natural number B. A rational number C. An irrational number D. A whole number
128	Every recurring decimal represents	A. A natural number B. A rational number C. An irrational number D. A whole number
129	Every irrational number is	A. A real number B. A prime number C. A natural number D. An integer
130	A non-terminating, non-recurring decimal represent	A. A natural number B. A rational number C. An irrational number D. A prime number
131	Every whole number is	A. A real number B. An irrational number C. A prime number D. A negative integer
132	Every natural number is	A. A prime number B. An irrational number C. An integer D. An even number
133	Every real number is	A. A complex number B. A rational number C. A natural number D. A prime number
134	0.25 is	A. An irrational number B. A natural number C. A prime number D. A rational number
135	1.4142135 is	A. A natural numberB. A rational numberC. A prime numberD. An irrational number
136	π is the ration of	A. Area of a circle to its diameter B. Area of a circle to its radius C. Circumference of a circle to its diameter.

		D. Circumference of circle to its radius
137	Question Image	A. Associative law of addition B. Commutative law of addition C. Additive identity D. Closure law of addition
138	Question Image	A. Associative law of addition B. Commutative law of addition C. Additive identity D. Closure law of addition
139	Question Image	A. Associate law of addition B. Commutative law of addition C. Additive identity D. Closure law of addition
140	Question Image	A. Closure law of addition B. Closure law of multiplication C. Commutative law of addition D. Commutative law of multiplication
141	Question Image	A. Closure law of addition B. Associative law of addition C. Commutative law of multiplication D. Associative law of multiplication
142	Question Image	A. Associative law of multiplication B. Commutative law of addition C. Commutative law of multiplication D. Associative law of addition
143	Question Image	A. Reflexive property B. Symmetric property C. Transitive property D. Additive property
144	Question Image	A. Reflexive property B. Symmetric property C. Transitive property D. Additive property
145	In R, the additive identity is	A. 0 B. 1 C1 D. None
146	In R, the multiplicative identity is	A. 0 B. 1 C1 D. None
147	In R, the additive inverse of a is	A. 0 B. 1 Ca D. 1/a
148	In R, the multiplicative inverse of a is	A. 0 B. 1 Ca D. 1/a
149	In R the number of identity element w.r.t '+' is	A. One B. Two C. Three D. Four
150	In R the number of identity elements w.r.t.'.' is	A. One B. Two C. Three D. Four
151	The additive inverse of 2/3 is	A. 3/2 B2/3 C3/2 D. 0
152	The multiplicative inverse of 2/3 is	A. 3/2 B2/3 C3/2 D. 1
153	The multiplicative inverse of 4 is	A4 B1/4 C. 1/4 D. 1

154	The multiplicative inverse of 1 is	A. 1 B1 C. 0 D. Does not exist
155	The multiplicative inverse of 0 is	A. 1 B1 C. 0 D. Does not exist
156	The additive inverse of 1 is	A. 1 B1 C. 0 D. Does not exist
157	The additive inverse of 0 is	A. 1 B1 C. 0 D. Does not exist
158	Question Image	A. a = a B. a < a C. a > a D. a ² = a
159	Question Image	
160	Question Image	
161	Question Image]
162	In R the left cancellation property w.r.t addition is	
163	In R the right cancellation property w.r.t. addition is	
164	Question Image	A. $(a + b)c = a \cdot c + bc$ B. $a + b = b + a$ C. $(a + b) + c = a + (b + c)$ D. $a(b+c) = ab + ac$
165	Question Image	A. $(a + b)c = ac + bc$ B. $a + b = b + a$ C. $(a + b) + c = a + (b + c)$ D. $a(b + c) = ab + ac$
166	Question Image	A. Principle of equality of fractions B. Rule for product of fraction C. Rule for quotient of fraction
167	Question Image	A. Principle of equality of fractions B. Rule for product of fraction C. Rule for quotient of fraction D. Golden rule of fractions
168	Question Image	A. Principle of equality of fractions B. Rule for product of fractions C. Golden rule of fractions D. Rule for quotient of fractions
169	Question Image	A. Principle of equality of fractions B. Rule for product of fractions C. Golden rule for fractions D. Rule for quotient of fractions
170	Question Image	A. Principle of equality of fractions B. Rule for product of fractions C. Golden rule for fractions D. Rule for quotient of fractions
171	The set { 1 , -1} is closed w.r.t.	A. Addition B. Multiplications C. Subtraction D. None of these
172	Question Image	A. Additive property in R B. Multiplication property in R C. Cancellation property in R D. Distribution property in R
173	Which of the following sets has closure property w.r.t. addition	A. { 0 } B. { 1 } C. { 0, -1} D. { 1, -1}
174	Name the property used in 4 + 9 = 9 + 4	A. Associative property of addition B. Commutative property of addition C. Distributive property D. Additive identity

A. 1

175	Question Image	A. Associative property of addition B. Commutative property of addition C. Distributive property D. Additive identity
176	Question Image	A. Associative property of addition B. Associative property of multiplication C. Commutative property of addition D. Commutative property of multiplication
177	Name the property used in $4 \times (5 \times 8) = (4 \times 5) \times 8$	A. Associative property of addition B. Associative property of multiplication C. Additive identity D. Multiplicative identity
178	Name the property used in 100 + 0 = 100	A. Additive inverse B. Multiplicative inverse C. Additive identity D. Multiplicative identity
179	Name the property used in 4.1 + (-4.1) = 0	A. Additive inverse B. Multiplication inverse C. Additive identity D. Multiplication identity
180	Name the property used in 1000 x 1 = 1000	A. additive inverse B. multiplicative inverse C. additive identity D. multiplicative identity
181	Name the property used in a (b-c) = ab - ac	A. commutative property of multiplication B. distributive property of multiplication C. associative property of multiplication D. multiplicative inverse
182	Question Image	A. additive property B. multiplicative property C. additive identity D. multiplicative identity
183	Question Image	A. additive property B. multiplicative property C. additive inverse D. additive identity
184	Question Image	A. real number B. complex number C. rational number D. irrational number
185	Question Image	A. 0 B. 1 C1 D. 2
186	Question Image	
187	Question Image	A. real part of z B. imaginary part of z C. conjugate of z D. modulus of z
188	Question Image	B. 1 C1
189	Question Image	A. 1 B1
190	The sum of complex number (a,b) and (c,d) is	
191	The product of complex numbers (a,b) and (c,d) is	A. (ac, bd) B. (ac-bd, ad+bc) C. (ab,cd) D. (ac+bd,ad-bc)
192	Question Image	
193	Every real number is	A. a positive integerB. a rational numberC. a negative integerD. a complex number

194	Question Image	A. x C. y
195	Question Image	
196	Question Image	A. (x, y) B. (kx, y) C. (x, ky) D. (kx, ky)
197	The multiplicative inverse of (a,b) is	
198	Question Image	
199	Question Image	
200	Zero is	A. An irrational number B. A rational number C. A negative integer D. A positive number
201	6 is	A. A prime integer B. An irrational number C. A rational number D. An odd integer
202	Question Image	A. A rational numberB. A irrational numberC. An even integerD. A factor of 36
203	3/2 is	A. An irrational numberB. Whole numberC. A positive integerD. A rational number
204	Every prime number is also	A. Rational number B. Even number C. Irrational number D. Multiple of two numbers
205	Question Image	A. A positive integer B. A negative integer C. A natural number D. An irrational number
206	The value of x, and y, when $(x + iy)^2 = 5 + 4i$	A. X = 2, y = -1 B. X = -2, y=1 C. X = 2, y = -1 D. X = 2, y = 2
207	If $Z = (1,2)$, then $Z^{-1} = ?$	A. (0.2, 0.4) B. (-0.2, 0.4) C. (0.2, -0.4) D. (-0.2, -0.4)
208	If $Z_1 = 1 + i$, $Z_2 = 2 + 3i$, then $ Z_2 - Z_1 = ?$	
209	Question Image	A. 15 B. 15 i C15 i D15
210	The solution set of the equation $ 3x + 2 = 5$ is	
211	The equation x + 4 = x has solution	A. x = -2 B. x = 2 C. x = -4 D. x = 4
212	Question Image	
213	What is the conjugate of -7 -2i?	A7 + 2i B. 7 + 2i C. 7 -2i D. None of these
214	Question Image	A3 -2i B. 3 +2i C. 1 + 2i D. 1 - 2i
215	The value of x, and y, when $(x + iy)^2 = 5 + 4i$	A. X = 2, y = 1 B. X = -2, y = 1 C. X = 2, y = -1 D. X = 2, y = 2

216	The square root of 2i - 20i is	A. +-(5 - 2i) B. +-(5 + 2i) C. (5 - 2i) D. None of these
217	The multiplicative inverse of 1 - 2i is	
218	Question Image	
219	Geometrically, the modulus of a complex number represents its distance from the	A. Point (1, 0) B. Point (0, 1) C. Point (1, 1) D. Point (0, 0)
220	The set {1, 2, 3, 4,} is called	A. Set of Natural numbers B. Set of whole numbers C. Set of rational number D. Set of irrational numbers
221	Question Image	A. Set of whole number B. Rational Numbers C. Complex numbers D. Whole numbers
222	QUQ'	
223	The symbol of irrational is	A. W B. N C. Q D. Q'
224	Question Image	A. Rational B. Irrational C. Natural D. Odd
225	Question Image	A. Rational B. Irrational C. Even D. Odd
226	202.04 is an example of	A. Recurring decimalsB. Non-recurring decimalsC. Terminating decimalsD. None of above
227	1/3 is a decimal	A. Recurring B. Terminating C. Non-terminating D. None of the above
228	Question Image	A. N B. r C. 2r D. < >π
229	Question Image	A. Closure law of addition B. Associative law of addition C. Additive inverse D. Additive identity
230	Question Image	A. Commutative law of addition B. Associative law of addition C. Additive identity D. Additive inverse
231	Associative law of multiplication	A. ab = ba B. a(bc) = (ab) c C. a(b+c) = ab + ac D. (a + b)c = ac + bc
232	a.a ⁻¹ = a ⁻¹ .a = 1 is a	A. Commutative law of multiplication B. Multiplication identity C. Associative law of multiplication D. Multiplication inverse
233	Question Image	A. Commutative law of multiplication B. Closure law of multiplication C. Associative law of multiplication D. Multiplication identity
		A. Reflexive property B. Symmetric property

234	Question Image	C. Cancellations property w.r.t. addition
235	Question Image	D. Transitive property A. Symmetric property B. Cancellation property w.r.t. multiplication C. Reflexive property D. Transitive property
236	If 4 > b or a < b than a = b is a	A. Additive property B. Transitive property C. Trichotomy property of inequality D. None of above
237	Question Image	A. Multiplication property B. Additive property C. Trichotomy property D. Transitive property of inequality
238	Question Image	A. Trichotomy property B. Additive property of inequality C. Transitive property D. Multiplicative property
239	$(a^{-1})^{-1}=$	A. a ⁻¹ B. a Ca D. None of above
240	Question Image	A. Principle of equality of Fractions B. Rule for product of fraction C. Golden rule of fraction D. Rule of quotient of Fraction
241	Question Image	A. Rule of quotient of fraction B. Golden rule of fraction C. Rule for product of fraction D. Principle for equality of fraction
242	Question Image	A. Commutative property of addition B. Closure property of addition C. Additive inverse D. Associative property w.r.t. to addition
243	Question Image	A. Additive property of inequality B. Commutative property C. Additive inverse D. Additive identity
244	i=	
245	In (x + iy), y is called as	A. Imaginary part B. Complex number C. Real part D. None of above
246	i3=	A1 B. i Ci D. 1
247	(a+bi) - (c+di)=	A. (a+b) = (c+d) B. (a+c) + i(b+d) C. (a - c) + (c-d)i D. (a - c)+ (b - d)i
248	Question Image	
249	(a, b) + (-a, -b) =	A. (0,0) B. (a, b) C. (-a, -b) D. (1, 1)
250	$(a,0) \times (c,0) =$	A. (0,ac) B. (ac, 0) C. (0,0) D. (a, c)
251	i ² =	A. 1 B. 2 C1 D. 0
252	Question Image	A.
		A. (4, 4)

253	(7, 9) + (3, -5) =	C. (9, -5) D. (7, 3)
254	Question Image	
255	Question Image	
256	In polar form of complex number r =	
257	Question Image	
258	The multiplicative inverse of -3i is	A. 3i B3i C1/3i D. 1/3 i
259	i ¹⁰¹ =	A. i B. i ² Ci D1
260	If $Z_1 = 1 + i$, $Z_2 = 2 + 3i$, then $ Z_1 - Z_2 = ?$	
261	Question Image	A. 0 B. 1 C1 D. None of these
262	Question Image	A. z is purely imaginary B. a is any complex number C. z is real D. None of these
263	Question Image	A. 15 B. 15 i C15 i D15
264	If z_1 = 2 + 6i and z_2 = 3 + 7i, then which expression defines the product of z_1 and z_2 ?	A. 36 + (-32)i B36 + 32i C. 6 + (-11)1 D. 0, +(-12)i
265	Which element is the additive inverse of (a, b) in Complex numbers?	A. (a, 0) B. (0, b) C. (a, b) D. (-a, -b)
266	What is the conjugate of -6 -i?	A6 +i B. 6+i C6 -i D. 6 -i
267	Which of the following has the same value as i ¹¹³ ?	A. i B1 Ci D. 1
268	Question Image	
269	Gooch crucible is made of :	A. Brass. B. Porcelain. C. Bronze. D. Gold.
270	The real number system contains.	A. Positive Numbers B. Negative numbers C. Zero D. (option a, b and c)
271	For each real number, there is a number which is its	A. Negative B. Possitive C. Opposite D. Similar
272	Rational number is a number which can be written as a terminating decimal fraction or a	A. Non-terminating decimal fraction B. Non-recurring C. Recurring decimal fraction D. a, b and c
273	The set of rational number is represented by	A. W B. R C. Q' D. <div>Q</div> <div> </div>
274	Union of the sets of rational and irrational numbers is called 6th set of	A. Natural numbers B. Real numbers

		C. Whole numbers D. Prime numbers
275	There is no element common in	A. N and W B. E and W C. N and O D. Q and Q'
276	√11 is	A. an irrational number B. Rational number C. odd number D. Negative number
277	The decimal fraction in which we have finite number of digits in its decimal part is called.	A. recurring decimal fraction B. Non terminating faction C. Non recurring fraction D. terminating decimal fraction
278	The square root of every incomplete square is an	A. Rational numbers B. Even numbers C. odd numbers D. Irrational numbers
279	It is not possible to find the exact value of	A. π B. √9 C. ∜27 D. √1
280	Such fraction which can not be written in the form ofp/q where p,q and $q \neq 0$,such fractions are called.	A. Fractinal numbers B. Rational Numbers C. Even Numbers D. Whole Numbers
281	Q U Q' =	A. Q B. Q' C. N D. R
282	Some of two real numbers is also a real number , this property is called:	A. Commutative property w.r.t addition B. Closure property w.r.t. addition C. Associative property w.r.t. addition D. Distributive property w.r.t addition
283	The multiplicative inverse ofx*(-1) is	A. x B. a-2 C. 0 D. 1
284	I is not	A. Real number B. Natural number C. Prime Number D. Whole Number
285	The additive identity of real number is	A. 1 B. 2 C. 1/2 D. 0
286	4/√49 is a	A. Irrational Number B. Prime Number C. Rational number D. Whole number
287	The√ is used for the	A. Positive square root B. Negative square root C. +ve and -ve square root D. Whole number
288	The negative square root of 9 can be written as:	A√9 B. √9 C. √18 D√18
289	If a and b are real numbers then a+b is also real number this law is called	A. associative law of addition B. closure law of addition C. Distributive law of addition D. Commutative law of addition
290	The identity element with respect to subtraction is	A. 0 B1 C. 0 and 1 D. None of thes
291	If 0 = R, thenthe additive inverse of a is	A. 1/9 B. ^{1/-9} C. a Da

C. Whole numbers

292	$2/9,5/7 \in R,(2 \mid 9)(5 \mid 7)=10/63 \in R$ this property is called	A. Associative property B. Identity property C. Commutative property D. Closure property w.r.t multiplication
293	3.5+5.4=5.4+3.5 =8.9 this property of addition is called	A. additive identity B. assoclative property C. commulative property D. closure property
294	$\sqrt{2} + \sqrt{3} + \sqrt{5}$ = ($\sqrt{2} + \sqrt{3} + \sqrt{5}$: this property is called	A. associative property w.r.t addition B. commutative property C. Closure property w.r.t addition D. Additive identity
295	The set of positive integers, 0 and negative integers is known as the set of	A. Natural numbers B. Rational numbers C. All integers D. Irrational numbers
296	If P is a whole number greater than 1, which has only P and I are factors. Then P is called	A. Wholw number B. Prime number C. Even number D. Odd number
297	Any whole number can be written as a product of factors which are	A. Odd numbers B. Prime number C. Rational number D. Even number
298	14 is not a	A. Prime number B. Whole number C. Even number D. Real number
299	24 can be written as a product of	A. Odd factors B. Even factors C. Whole factors D. Prime factors